Escherichia coli from Human Wounds: Analysis of Resistance to β-Lactams and Expression of RND Efflux Pumps
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38050628
PubMed Central
PMC10693772
DOI
10.2147/idr.s435622
PII: 435622
Knihovny.cz E-zdroje
- Klíčová slova
- ampicillin resistance, antibiotics, clinical isolates, resistance mechanisms,
- Publikační typ
- časopisecké články MeSH
PURPOSE: Resistance of pathogenic strains of Escherichia coli to β-lactams, particularly to ampicillin, is on the rise and it is attributed to intrinsic and acquired mechanisms. One important factor contributing to resistance, together with primarily resistance mechanisms, is a mutation and/or an over-expression of the intrinsic efflux pumps in the resistance-nodulation-division (RND) superfamily. Among these efflux pumps, AcrA, AcrB, TolC, and AcrD play an important role in antimicrobial co-resistance, including resistance to β-lactams. MATERIALS AND METHODS: Twelve E. coli isolates obtained from patients' wounds and the control strain of E. coli ATCC 25922 were analyzed. The phenotypic resistance of these isolates to selected β-lactams was assessed by determination of the minimal inhibitory concentration. Additionally, the prevalence of β-lactamase genes (blaTEM, blaCTX-M, blaSHV, and blaAmpC) was screened by PCR. Real-time qPCR was used to determine the expression of the selected efflux pumps acrA, acrB, tolC, and acrD and the repressor acrR after the exposure of E. coli to ampicillin. RESULTS: Phenotypic resistance to β-lactams was detected in seven isolates, mainly to ampicillin and piperacillin. This was corroborated by the presence of at least one acquired bla gene in each of these isolates. Although E. coli strains varied in the expression of RND-family efflux pumps after the ampicillin exposure, their gene expression indicated that these pumps did not play a major role in the phenotypic resistance to ampicillin. CONCLUSION: Each E. coli isolate displayed unique characteristics, differing in minimum inhibitory concentration (MIC) values, prevalence of acquired blaTEM and blaCTX-M genes, and expression of the RND-family pumps. This together demonstrates that these clinical isolates employed distinct intrinsic or acquired resistance pathways for their defense against ampicillin. The prevalence and spread of ampicillin resistant E. coli has to be monitored and the search for ampicillin alternatives is needed.
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
Department of Traumatology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Pandey N, Cascella M. Beta lactam antibiotics. 2019. PubMed
Goussard S, Courvalin P. Updated sequence information for TEM β-lactamase genes. Antimicrob Agents Chemother. 1999;43(2):367–370. doi:10.1128/AAC.43.2.367 PubMed DOI PMC
Osmon DR, Berbari EF, Berendt AR, et al. Executive summary: diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):1–10. doi:10.1093/cid/cis966 PubMed DOI
Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt). 2013;14(1):73–156. doi:10.1089/sur.2013.9999 PubMed DOI
Li M, Liu Q, Teng Y, et al. The resistance mechanism of Escherichia coli induced by ampicillin in laboratory. Infect Drug Resist. 2019;12:2853. doi:10.2147/IDR.S221212 PubMed DOI PMC
Katzung BG, Masters SB, Trevor AJ. Basic & Clinical Pharmacology. Ch. 8. New York: McGraw-Hill; 2012.
Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557–584. doi:10.1128/CMR.8.4.557 PubMed DOI PMC
Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009;22(1):161–182. doi:10.1128/CMR.00036-08 PubMed DOI PMC
Tan P, Wang Z, Sun A, Yan J, Zhao J. Predominant β-lactamase genotypes of Escherichia coli isolates and induction and inhibition mechanisms of β-lactamase gene expression. Zhonghua liu Xing Bing xue za zhi. 2015;36(5):484–490. PubMed
Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol. 2016;7:1483. doi:10.3389/fmicb.2016.01483 PubMed DOI PMC
Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol. 2018;16(9):523–539. doi:10.1038/s41579-018-0048-6 PubMed DOI
Blanco P, Hernando-Amado S, Reales-Calderon JA, et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms. 2016;4(1):14. doi:10.3390/microorganisms4010014 PubMed DOI PMC
Hinchliffe P, Symmons MF, Hughes C, Koronakis V. Structure and operation of bacterial tripartite pumps. Annu Rev Microbiol. 2013;67:221–242. doi:10.1146/annurev-micro-092412-155718 PubMed DOI
Yasufuku T, Shigemura K, Shirakawa T, et al. Correlation of overexpression of efflux pump genes with antibiotic resistance in Escherichia coli strains clinically isolated from urinary tract infection patients. J Clin Microbiol. 2011;49(1):189–194. doi:10.1128/JCM.00827-10 PubMed DOI PMC
Yang S, Clayton SR, Zechiedrich EL. Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J Antimicrob Chemother. 2003;51(3):545–556. doi:10.1093/jac/dkg126 PubMed DOI
Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418. doi:10.1128/CMR.00117-14 PubMed DOI PMC
Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol. 2006;55(12):1619–1629. doi:10.1099/jmm.0.46747-0 PubMed DOI
Delmar JA, Yu EW. The A bg T family: a novel class of antimetabolite transporters. Prot Sci. 2016;25(2):322–337. doi:10.1002/pro.2820 PubMed DOI PMC
Hassan KA, Elbourne LD, Li L, et al. An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Front Microbiol. 2015;6:333. doi:10.3389/fmicb.2015.00333 PubMed DOI PMC
Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs. 2009;69(12):1555–1623. doi:10.2165/11317030-000000000-00000 PubMed DOI PMC
Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J Bacteriol. 2002;184(23):6490–6498. doi:10.1128/JB.184.23.6490-6499.2002 PubMed DOI PMC
Wang Z, Zhang P, Ding X, et al. Co-delivery of ampicillin and β-lactamase inhibitor by selenium nanocomposite to achieve synergistic anti-infective efficiency through overcoming multidrug resistance. Chem Eng J. 2021;414:128908. doi:10.1016/j.cej.2021.128908 DOI
Zheng B, Zhang J, Ji J, et al. Emergence of Raoultella ornithinolytica coproducing IMP-4 and KPC-2 carbapenemases in China. Antimicrob Agents Chemother. 2015;59(11):7086–7089. doi:10.1128/AAC.01363-15 PubMed DOI PMC
Feizabadi MM, Delfani S, Raji N, et al. Distribution of bla TEM, bla SHV, bla CTX-M genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microbial Drug Resist. 2010;16(1):49–53. doi:10.1089/mdr.2009.0096 PubMed DOI
Belaaouaj A, Lapoumeroulie C, Caniça MM, et al. Nucleotide sequences of the genes coding for the TEM-like β-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol Lett. 1994;120(1–2):75–80. doi:10.1111/j.1574-6968.1994.tb07010.x PubMed DOI
Féria C, Ferreira E, Correia JD, Gonçalves J, Caniça M. Patterns and mechanisms of resistance to β-lactams and β-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. J Antimicrob Chemother. 2002;49(1):77–85. doi:10.1093/jac/49.1.77 PubMed DOI
Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob Agents Chemother. 2011;55(2):921–924. doi:10.1128/AAC.00996-10 PubMed DOI PMC
Scientific T. Sodium acetate/ethanol precipitation protocol. ThermoFisher Scientific; 2023. Available from: https://www.thermofisher.com/cz/en/home/references/protocols/nucleic-acid-purification-and-analysis/dna-protocol/sodium-acetate-precipitation-of-small-nucleic-acids.html. Accessed August 14, 2023.
Testing, E.C.o.A.S. Breakpoint tables for interpretation of MICs and zone diameters; 2021.
Tewari R, Ganaie F, Venugopal N, Mitra S, Shome R, Shome BR. Occurrence and characterization of genetic determinants of β-lactam-resistance in Escherichia coli clinical isolates. Infect Genet Evol. 2022;100:105257. doi:10.1016/j.meegid.2022.105257 PubMed DOI
Röderova M, Halova D, Papousek I, et al. Characteristics of quinolone resistance in Escherichia coli isolates from humans, animals, and the environment in the Czech Republic. Front Microbiol. 2017;7:2147. doi:10.3389/fmicb.2016.02147 PubMed DOI PMC
Pandit R, Awal B, Shrestha SS, Joshi G, Rijal BP, Parajuli NP. Extended-spectrum β-lactamase (ESBL) genotypes among multidrug-resistant uropathogenic Escherichia coli clinical isolates from a teaching hospital of Nepal. Interdiscip Perspect Infect Dis. 2020;2020. doi:10.1155/2020/6525826 PubMed DOI PMC
Oberoi L, Singh N, Sharma P, Aggarwal A. ESBL, MBL and Ampc β lactamases producing superbugs–Havoc in the Intensive Care Units of Punjab India. J Clin Diagn Res. 2013;7(1):70. doi:10.7860/JCDR/2012/5016.2673 PubMed DOI PMC
Jafari SA, Mobaiyen H. Frequency and resistance patterns in clinical isolates of Escherichia coli Extended Spectrum Beta Lactamase producing treatment Centers in Marand city, Iran; 2017.
Mesa-Varona O, Kaspar H, Grobbel M, Tenhagen B-A. Phenotypical antimicrobial resistance data of clinical and non-clinical Escherichia coli from poultry in Germany between 2014 and 2017. PLoS One. 2020;15(12):e0243772. doi:10.1371/journal.pone.0243772 PubMed DOI PMC
Sáenz Y, Zarazaga M, Briñas L, Lantero M, Ruiz-Larrea F, Torres C. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int J Antimicrob Agents. 2001;18(4):353–358. doi:10.1016/S0924-8579(01)00422-8 PubMed DOI
Maynard C, Bekal S, Sanschagrin F, et al. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol. 2004;42(12):5444–5452. doi:10.1128/JCM.42.12.5444-5452.2004 PubMed DOI PMC
Brinas L, Zarazaga M, Sáenz Y, Ruiz-Larrea F, Torres C. β-Lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother. 2002;46(10):3156–3163. doi:10.1128/AAC.46.10.3156-3163.2002 PubMed DOI PMC
Alharbi NS, Khaled JM, Kadaikunnan S, et al. Prevalence of Escherichia coli strains resistance to antibiotics in wound infections and raw milk. Saudi J Biol Sci. 2019;26(7):1557–1562. doi:10.1016/j.sjbs.2018.11.016 PubMed DOI PMC
Naik TB, Mane V, Biradar AJP. Occurrence of extended-spectrum beta-lactamases and the Antibiogram Pattern of Escherichia coli Isolates from Pus and Urine Samples. J Pure Appl Microbiol. 2022;15(26).
Yenn TW, Khan MA, Syuhada NA, Ring LC, Ibrahim D, Tan W-N. Stigmasterol: an adjuvant for beta lactam antibiotics against beta-lactamase positive clinical isolates. Steroids. 2017;128:68–71. doi:10.1016/j.steroids.2017.10.016 PubMed DOI
Sjölund M, Bengtsson S, Bonnedahl J, Hernandez J, Olsen B, Kahlmeter G. Antimicrobial susceptibility in Escherichia coli of human and avian origin—a comparison of wild-type distributions. Clin Microbiol Infect. 2009;15(5):461–465. doi:10.1111/j.1469-0691.2009.02705.x PubMed DOI
Rodríguez-Villodres Á, Gil-Marqués ML, Álvarez-Marín R, et al. Extended-spectrum resistance to β-lactams/β-lactamase inhibitors (ESRI) evolved from low-level resistant Escherichia coli. J Antimicrob Chemother. 2020;75(1):77–85. doi:10.1093/jac/dkz393 PubMed DOI
Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence of plasmidic AmpC type β-lactamase-mediated resistance in Escherichia coli: report from the SENTRY Antimicrobial Surveillance Program (North America, 2004). Int J Antimicrob Agents. 2006;28(6):578–581. doi:10.1016/j.ijantimicag.2006.07.025 PubMed DOI
Tadesse DA, Zhao S, Tong E, et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis. 2012;18(5):741. doi:10.3201/eid1805.111153 PubMed DOI PMC
Bora A, Hazarika NK, Shukla SK, Prasad KN, Sarma JB, Ahmed G. Prevalence of blaTEM, blaSHV and blaCTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India. Indian J Pathol Microbiol. 2014;57(2):249. doi:10.4103/0377-4929.134698 PubMed DOI
Ojdana D, Sacha P, Wieczorek P, et al. The occurrence of blaCTX-M, blaSHV, and blaTEM genes in extended-spectrum β-lactamase-positive strains of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis in Poland. Int J Antibiot. 2014;2014:1–7. doi:10.1155/2014/935842 DOI
Olesen I, Hasman H, Møller Aarestrup F. Prevalence of β-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microbial Drug Resist. 2004;10(4):334–340. doi:10.1089/mdr.2004.10.334 PubMed DOI
Fu Y, Zhang F, Zhang W, et al. Differential expression of blaSHV related to susceptibility to ampicillin in Klebsiella pneumoniae. Int J Antimicrob Agents. 2007;29(3):344–347. doi:10.1016/j.ijantimicag.2006.10.015 PubMed DOI
Chen Y, Zhao J, Ding F, et al. The blaCTX-M gene independently enhances drug resistance level to ampicillin in clinical isolates of Klebsiella pneumoniae. J Antibiot (Tokyo). 2012;65(9):479–481. doi:10.1038/ja.2012.44 PubMed DOI
Lesani SS, Soleimani M, Shakib P, Zolfaghari MR. Prevalence of blaCTX-M, blaSHV, and blaTEM genes in Escherichia coli strains isolated from urinary tract infection samples of patients in the Intensive Care Unit in Qom, Iran. Gene Cell Tissue. 2020;7(2). doi:10.5812/gct.102700 DOI
Pishtiwan AH, Khadija KM. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterr J Hematol Infect Dis. 2019;11(1). doi:10.4084/MJHID.2019.041 PubMed DOI PMC
Ugbo E, Anyamene C, Moses I, et al. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae of clinical origin. Gene Rep. 2020;21:100909. doi:10.1016/j.genrep.2020.100909 DOI
Nawaz M, Khan A, Khan S, et al. Identification of novel plasmid replicons harboring β-lactamase resistant genes in ampicillin-resistant uropathogenic Escherichia coli. J Bacteriol Mycol. 2019;6:1102.
Soares CRP, Magalhães V, de Araújo PSR. Coexistence of blaTEM, blaCTX, blaKPC, blaNDM, blaSIM e blaOXA-48 in polymicrobial bloodstream isolates from a patient with acute myeloid leukemia. Res Soc Dev. 2021;10(5):e39310514985–e39310514985. doi:10.33448/rsd-v10i5.14985 DOI
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev. 2002;66(4):671–701. doi:10.1128/MMBR.66.4.671-701.2002 PubMed DOI PMC
Mazzariol A, Tokue Y, Kanegawa TM, Cornaglia G, Nikaido H. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein AcrA. Antimicrob Agents Chemother. 2000;44(12):3441–3443. doi:10.1128/AAC.44.12.3441-3443.2000 PubMed DOI PMC
Chetri S, Bhowmik D, Paul D, et al. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019;19(1):1–7. doi:10.1186/s12866-019-1589-1 PubMed DOI PMC
Atac N, Kurt-Azap O, Dolapci I, et al. The role of AcrAB–TolC efflux pumps on quinolone resistance of E. coli ST131. Curr Microbiol. 2018;75(12):1661–1666. doi:10.1007/s00284-018-1577-y PubMed DOI
Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol. 1996;19(1):101–112. doi:10.1046/j.1365-2958.1996.357881.x PubMed DOI
Li M, Gu R, Su -C-C, et al. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. J Mol Biol. 2007;374(3):591–603. doi:10.1016/j.jmb.2007.09.064 PubMed DOI PMC
Blair JM, Richmond GE, Piddock LJ. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014;9(10):1165–1177. doi:10.2217/fmb.14.66 PubMed DOI
Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol. 2015;6:587. doi:10.3389/fmicb.2015.00587 PubMed DOI PMC
Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol. 2005;187(6):1923–1929. doi:10.1128/JB.187.6.1923-1929.2005 PubMed DOI PMC
Sano N, Kim J-S, Onda Y, et al. RNA-Seq using bulked recombinant inbred line populations uncovers the importance of brassinosteroid for seed longevity after priming treatments. Sci Rep. 2017;7(1):8095. doi:10.1038/s41598-017-08116-5 PubMed DOI PMC