Bacterial Pathogens and Evaluation of a Cut-Off for Defining Early and Late Neonatal Infection

. 2021 Mar 09 ; 10 (3) : . [epub] 20210309

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33803288
Odkazy

PubMed 33803288
PubMed Central PMC7998728
DOI 10.3390/antibiotics10030278
PII: antibiotics10030278
Knihovny.cz E-zdroje

Bacterial infections are an important cause of mortality and morbidity in newborns. The main risk factors include low birth weight and prematurity. The study identified the most common bacterial pathogens causing neonatal infections including their resistance to antibiotics in the Neonatal Department of the University Hospital Olomouc. Additionally, the cut-off for distinguishing early- from late-onset neonatal infections was assessed. The results of this study show that a cut-off value of 72 h after birth is more suitable. Only in case of early-onset infections arising within 72 h of birth, initial antibiotic therapy based on gentamicin with ampicillin or amoxicillin/clavulanic acid may be recommended. It has been established that with the 72-h cut-off, late-onset infections caused by bacteria more resistant to antibiotics may be detected more frequently, a finding that is absolutely crucial for antibiotic treatment strategy.

Zobrazit více v PubMed

Shah B.A., Padbury J.F. Neonatal sepsis. Virulence. 2014;5:170–178. doi: 10.4161/viru.26906. PubMed DOI PMC

Cortese F., Scicchitano P., Gesualdo M., Filaninno A., De Giorgi E., Schettini F., Laforgia N., Ciccone M.M. Early and Late Infections in Newborns: Where Do We Stand? A Review. Pediatr. Neonatol. 2016;57:265–273. doi: 10.1016/j.pedneo.2015.09.007. PubMed DOI

Tzialla C., Borghesi A., Pozzi M., Stronati M. Neonatal infections due to multi-resistant strains: Epidemiology, current treatment, emerging therapeutic approaches and prevention. Clin. Chim. Acta. 2015;451:71–77. doi: 10.1016/j.cca.2015.02.038. PubMed DOI

McMillan J.A., Weiner L.B., Lamberson H.V., Hagen J.H., Aubry R.H., Abdul-Karim R.W., Sunderji S.G., Higgins A.P. Efficacy of maternal screening and therapy in the prevention of chlamydia infection of the newborn. Infection. 1985;13:263–266. doi: 10.1007/BF01645435. PubMed DOI

Darville T. Chlamydia trachomatis Infections in Neonates and Young Children. Semin. Pediatr. Infect. Dis. 2005;16:235–244. doi: 10.1053/j.spid.2005.06.004. PubMed DOI

Santos R.P., Tristram D. A Practical Guide to the Diagnosis, Treatment, and Prevention of Neonatal Infections. Pediatr. Clin. N. Am. 2015;62:491–508. doi: 10.1016/j.pcl.2014.11.010. PubMed DOI PMC

Mukhopadhyay S., Wade K.C., Puopolo K.M. Drugs for the Prevention and Treatment of Sepsis in the Newborn. Clin. Perinatol. 2019;46:327–347. doi: 10.1016/j.clp.2019.02.012. PubMed DOI PMC

Poirel L., Madec J.-Y., Lupo A., Schink A.-K., Kieffer N., Nordmann P., Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018;6:289–316. doi: 10.1128/microbiolspec.arba-0026-2017. PubMed DOI PMC

European Centre for Disease Prevention and Control Data from the ECDC Surveillance Atlas—Antimicrobial resistance. [(accessed on 5 May 2020)]; Available online: https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc.

Paitan Y. Current Trends in Antimicrobial Resistance of Escherichia coli. Curr. Top. Microbiol. Immunol. 2018;416:181–211. doi: 10.1007/82_2018_110. PubMed DOI

Stoll B.J., Hansen N.I., Sánchez P.J., Faix R.G., Poindexter B.B., Van Meurs K.P., Bizzarro M.J., Goldberg R.N., Frantz I.D., Hale E.C., et al. Early Onset Neonatal Sepsis: The Burden of Group B Streptococcal and E. coli Disease Continues. Pediatrics. 2011;127:817–826. doi: 10.1542/peds.2010-2217. PubMed DOI PMC

Ocviyanti D., Wahono W.T. Risk Factors for Neonatal Sepsis in Pregnant Women with Premature Rupture of the Membrane. J. Pregnancy. 2018;2018:1–6. doi: 10.1155/2018/4823404. PubMed DOI PMC

Camacho-Gonzalez A., Spearman P.W., Stoll B.J. Neonatal Infectious Diseases. Pediatr. Clin. N. Am. 2013;60:367–389. doi: 10.1016/j.pcl.2012.12.003. PubMed DOI PMC

Shane A.L., Stoll B.J. Neonatal sepsis: Progress towards improved outcomes. J. Infect. 2014;68:S24–S32. doi: 10.1016/j.jinf.2013.09.011. PubMed DOI

Cho H.J., Cho H.-K. Central line-associated bloodstream infections in neonates. Korean J. Pediatr. 2019;62:79–84. doi: 10.3345/kjp.2018.07003. PubMed DOI PMC

Dong H., Cao H., Zheng H. Pathogenic bacteria distributions and drug resistance analysis in 96 cases of neonatal sepsis. BMC Pediatr. 2017;17:1–6. doi: 10.1186/s12887-017-0789-9. PubMed DOI PMC

Cohen-Wolkowiez M., Moran C., Benjamin D.K., Cotten C.M., Clark R.H., Smith P.B. Early and Late Onset Sepsis in Late Preterm Infants. Pediatr. Infect. Dis. J. 2009;28:1052–1056. doi: 10.1097/INF.0b013e3181acf6bd. PubMed DOI PMC

Hornik C., Fort P., Clark R., Watt K., Benjamin D., Smith P., Manzoni P., Jacqz-Aigrain E., Kaguelidou F., Cohen-Wolkowiez M. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum. Dev. 2012;88:S69–S74. doi: 10.1016/S0378-3782(12)70019-1. PubMed DOI PMC

Alcock G., Liley H.G., Cooke L., Gray P.H. Prevention of neonatal late-onset sepsis: A randomised controlled trial. BMC Pediatr. 2017;17:98. doi: 10.1186/s12887-017-0855-3. PubMed DOI PMC

Folgori L., Bielicki J. Future Challenges in Pediatric and Neonatal Sepsis: Emerging Pathogens and Antimicrobial Resistance. J. Pediatr. Intensiv. Care. 2019;8:17–24. doi: 10.1055/s-0038-1677535. PubMed DOI PMC

Zea-Vera A., Ochoa T.J. Challenges in the diagnosis and management of neonatal sepsis. J. Trop. Pediatr. 2015;61:1–13. doi: 10.1093/tropej/fmu079. PubMed DOI PMC

Russell A.R.B. Neonatal sepsis. Paediatr. Child Health. 2011;21:265–269. doi: 10.1016/j.paed.2010.11.003. PubMed DOI PMC

Shane A.L., Sánchez P.J., Stoll B.J. Neonatal sepsis. Lancet. 2017;390:1770–1780. doi: 10.1016/S0140-6736(17)31002-4. PubMed DOI

Bulkowstein S., Ben-Shimol S., Givon-Lavi N., Melamed R., Shany E., Greenberg D. Comparison of early onset sepsis and community-acquired late onset sepsis in infants less than 3 months of age. BMC Pediatr. 2016;16:1–8. doi: 10.1186/s12887-016-0618-6. PubMed DOI PMC

Greenberg R.G., Benjamin D.K. Neonatal candidiasis: Diagnosis, prevention, and treatment. J. Infect. 2014;69:S19–S22. doi: 10.1016/j.jinf.2014.07.012. PubMed DOI PMC

Hope W., Castagnola E., Groll A., Roilides E., Akova M., Arendrup M., Arikan-Akdagli S., Bassetti M., Bille J., Cornely O., et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbiol. Infect. 2012;18:38–52. doi: 10.1111/1469-0691.12040. PubMed DOI

Roilides E. Invasive candidiasis in neonates and children. Early Hum. Dev. 2011;87:S75–S76. doi: 10.1016/j.earlhumdev.2011.01.017. PubMed DOI

Straková L., Motlová J. Active surveillance of early onset disease due to group B streptococci in newborns. Indian J. Med. Res. 2004;119:205–207. PubMed

Simetka O., Petros M., Podesvová H. Prevention of early-onset neonatal group B streptococcal infection: Neonatal outcome after introduction of national screening guideline. Ceska Gynekol. 2010;75:41–46. PubMed

Van Dyke M.K., Phares C.R., Lynfield R., Thomas A.R., Arnold K.E., Craig A.S., Mohle-Boetani J., Gershman K., Schaffner W., Petit S., et al. Evaluation of Universal Antenatal Screening for Group B Streptococcus. New Engl. J. Med. 2009;360:2626–2636. doi: 10.1056/NEJMoa0806820. PubMed DOI

Boyer K.M., Gotoff S.P. Prevention of Early-Onset Neonatal Group B Streptococcal Disease with Selective Intrapartum Chemoprophylaxis. N. Engl. J. Med. 1986;314:1665–1669. doi: 10.1056/NEJM198606263142603. PubMed DOI

American Academy of Pediatrics Committee on Infectious Diseases and Committee on Fetus and Newborn Revised guidelines for prevention of early-onset group B streptococcal (GBS) infection. Pediatrics. 1997;99:489–496. doi: 10.1542/peds.99.3.489. PubMed DOI

Croxatto A., Prod’hom G., Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012;36:380–407. doi: 10.1111/j.1574-6976.2011.00298.x. PubMed DOI

The European Committee on Antimicrobial Susceptibility Testing—EUCAST. [(accessed on 10 January 2015)]; Available online: https://www.eucast.org/

Röderova M., Halova D., Papousek I., Dolejska M., Masarikova M., Hanulik V., Pudova V., Broz P., Htoutou-Sedlakova M., Sauer P., et al. Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic. Front. Microbiol. 2017;7:2147. doi: 10.3389/fmicb.2016.02147. PubMed DOI PMC

Husickova V., Cekanova L., Chroma M., Htoutou-Sedlakova M., Hricova K., Kolář M. Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subjects and hospitalized patients in the Czech Republic. Biomed. Pap. 2012;156:348–353. doi: 10.5507/bp.2012.039. PubMed DOI

Tenover F.C., Arbeit R.D., Goering R.V., Mickelsen P.A., Murray B.E., Persing D.H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995;33:2233–2239. doi: 10.1128/JCM.33.9.2233-2239.1995. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...