Bacterial Pathogens and Evaluation of a Cut-Off for Defining Early and Late Neonatal Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33803288
PubMed Central
PMC7998728
DOI
10.3390/antibiotics10030278
PII: antibiotics10030278
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotic therapy, bacteria, infection, newborn,
- Publikační typ
- časopisecké články MeSH
Bacterial infections are an important cause of mortality and morbidity in newborns. The main risk factors include low birth weight and prematurity. The study identified the most common bacterial pathogens causing neonatal infections including their resistance to antibiotics in the Neonatal Department of the University Hospital Olomouc. Additionally, the cut-off for distinguishing early- from late-onset neonatal infections was assessed. The results of this study show that a cut-off value of 72 h after birth is more suitable. Only in case of early-onset infections arising within 72 h of birth, initial antibiotic therapy based on gentamicin with ampicillin or amoxicillin/clavulanic acid may be recommended. It has been established that with the 72-h cut-off, late-onset infections caused by bacteria more resistant to antibiotics may be detected more frequently, a finding that is absolutely crucial for antibiotic treatment strategy.
Zobrazit více v PubMed
Shah B.A., Padbury J.F. Neonatal sepsis. Virulence. 2014;5:170–178. doi: 10.4161/viru.26906. PubMed DOI PMC
Cortese F., Scicchitano P., Gesualdo M., Filaninno A., De Giorgi E., Schettini F., Laforgia N., Ciccone M.M. Early and Late Infections in Newborns: Where Do We Stand? A Review. Pediatr. Neonatol. 2016;57:265–273. doi: 10.1016/j.pedneo.2015.09.007. PubMed DOI
Tzialla C., Borghesi A., Pozzi M., Stronati M. Neonatal infections due to multi-resistant strains: Epidemiology, current treatment, emerging therapeutic approaches and prevention. Clin. Chim. Acta. 2015;451:71–77. doi: 10.1016/j.cca.2015.02.038. PubMed DOI
McMillan J.A., Weiner L.B., Lamberson H.V., Hagen J.H., Aubry R.H., Abdul-Karim R.W., Sunderji S.G., Higgins A.P. Efficacy of maternal screening and therapy in the prevention of chlamydia infection of the newborn. Infection. 1985;13:263–266. doi: 10.1007/BF01645435. PubMed DOI
Darville T. Chlamydia trachomatis Infections in Neonates and Young Children. Semin. Pediatr. Infect. Dis. 2005;16:235–244. doi: 10.1053/j.spid.2005.06.004. PubMed DOI
Santos R.P., Tristram D. A Practical Guide to the Diagnosis, Treatment, and Prevention of Neonatal Infections. Pediatr. Clin. N. Am. 2015;62:491–508. doi: 10.1016/j.pcl.2014.11.010. PubMed DOI PMC
Mukhopadhyay S., Wade K.C., Puopolo K.M. Drugs for the Prevention and Treatment of Sepsis in the Newborn. Clin. Perinatol. 2019;46:327–347. doi: 10.1016/j.clp.2019.02.012. PubMed DOI PMC
Poirel L., Madec J.-Y., Lupo A., Schink A.-K., Kieffer N., Nordmann P., Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018;6:289–316. doi: 10.1128/microbiolspec.arba-0026-2017. PubMed DOI PMC
European Centre for Disease Prevention and Control Data from the ECDC Surveillance Atlas—Antimicrobial resistance. [(accessed on 5 May 2020)]; Available online: https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc.
Paitan Y. Current Trends in Antimicrobial Resistance of Escherichia coli. Curr. Top. Microbiol. Immunol. 2018;416:181–211. doi: 10.1007/82_2018_110. PubMed DOI
Stoll B.J., Hansen N.I., Sánchez P.J., Faix R.G., Poindexter B.B., Van Meurs K.P., Bizzarro M.J., Goldberg R.N., Frantz I.D., Hale E.C., et al. Early Onset Neonatal Sepsis: The Burden of Group B Streptococcal and E. coli Disease Continues. Pediatrics. 2011;127:817–826. doi: 10.1542/peds.2010-2217. PubMed DOI PMC
Ocviyanti D., Wahono W.T. Risk Factors for Neonatal Sepsis in Pregnant Women with Premature Rupture of the Membrane. J. Pregnancy. 2018;2018:1–6. doi: 10.1155/2018/4823404. PubMed DOI PMC
Camacho-Gonzalez A., Spearman P.W., Stoll B.J. Neonatal Infectious Diseases. Pediatr. Clin. N. Am. 2013;60:367–389. doi: 10.1016/j.pcl.2012.12.003. PubMed DOI PMC
Shane A.L., Stoll B.J. Neonatal sepsis: Progress towards improved outcomes. J. Infect. 2014;68:S24–S32. doi: 10.1016/j.jinf.2013.09.011. PubMed DOI
Cho H.J., Cho H.-K. Central line-associated bloodstream infections in neonates. Korean J. Pediatr. 2019;62:79–84. doi: 10.3345/kjp.2018.07003. PubMed DOI PMC
Dong H., Cao H., Zheng H. Pathogenic bacteria distributions and drug resistance analysis in 96 cases of neonatal sepsis. BMC Pediatr. 2017;17:1–6. doi: 10.1186/s12887-017-0789-9. PubMed DOI PMC
Cohen-Wolkowiez M., Moran C., Benjamin D.K., Cotten C.M., Clark R.H., Smith P.B. Early and Late Onset Sepsis in Late Preterm Infants. Pediatr. Infect. Dis. J. 2009;28:1052–1056. doi: 10.1097/INF.0b013e3181acf6bd. PubMed DOI PMC
Hornik C., Fort P., Clark R., Watt K., Benjamin D., Smith P., Manzoni P., Jacqz-Aigrain E., Kaguelidou F., Cohen-Wolkowiez M. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum. Dev. 2012;88:S69–S74. doi: 10.1016/S0378-3782(12)70019-1. PubMed DOI PMC
Alcock G., Liley H.G., Cooke L., Gray P.H. Prevention of neonatal late-onset sepsis: A randomised controlled trial. BMC Pediatr. 2017;17:98. doi: 10.1186/s12887-017-0855-3. PubMed DOI PMC
Folgori L., Bielicki J. Future Challenges in Pediatric and Neonatal Sepsis: Emerging Pathogens and Antimicrobial Resistance. J. Pediatr. Intensiv. Care. 2019;8:17–24. doi: 10.1055/s-0038-1677535. PubMed DOI PMC
Zea-Vera A., Ochoa T.J. Challenges in the diagnosis and management of neonatal sepsis. J. Trop. Pediatr. 2015;61:1–13. doi: 10.1093/tropej/fmu079. PubMed DOI PMC
Russell A.R.B. Neonatal sepsis. Paediatr. Child Health. 2011;21:265–269. doi: 10.1016/j.paed.2010.11.003. PubMed DOI PMC
Shane A.L., Sánchez P.J., Stoll B.J. Neonatal sepsis. Lancet. 2017;390:1770–1780. doi: 10.1016/S0140-6736(17)31002-4. PubMed DOI
Bulkowstein S., Ben-Shimol S., Givon-Lavi N., Melamed R., Shany E., Greenberg D. Comparison of early onset sepsis and community-acquired late onset sepsis in infants less than 3 months of age. BMC Pediatr. 2016;16:1–8. doi: 10.1186/s12887-016-0618-6. PubMed DOI PMC
Greenberg R.G., Benjamin D.K. Neonatal candidiasis: Diagnosis, prevention, and treatment. J. Infect. 2014;69:S19–S22. doi: 10.1016/j.jinf.2014.07.012. PubMed DOI PMC
Hope W., Castagnola E., Groll A., Roilides E., Akova M., Arendrup M., Arikan-Akdagli S., Bassetti M., Bille J., Cornely O., et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbiol. Infect. 2012;18:38–52. doi: 10.1111/1469-0691.12040. PubMed DOI
Roilides E. Invasive candidiasis in neonates and children. Early Hum. Dev. 2011;87:S75–S76. doi: 10.1016/j.earlhumdev.2011.01.017. PubMed DOI
Straková L., Motlová J. Active surveillance of early onset disease due to group B streptococci in newborns. Indian J. Med. Res. 2004;119:205–207. PubMed
Simetka O., Petros M., Podesvová H. Prevention of early-onset neonatal group B streptococcal infection: Neonatal outcome after introduction of national screening guideline. Ceska Gynekol. 2010;75:41–46. PubMed
Van Dyke M.K., Phares C.R., Lynfield R., Thomas A.R., Arnold K.E., Craig A.S., Mohle-Boetani J., Gershman K., Schaffner W., Petit S., et al. Evaluation of Universal Antenatal Screening for Group B Streptococcus. New Engl. J. Med. 2009;360:2626–2636. doi: 10.1056/NEJMoa0806820. PubMed DOI
Boyer K.M., Gotoff S.P. Prevention of Early-Onset Neonatal Group B Streptococcal Disease with Selective Intrapartum Chemoprophylaxis. N. Engl. J. Med. 1986;314:1665–1669. doi: 10.1056/NEJM198606263142603. PubMed DOI
American Academy of Pediatrics Committee on Infectious Diseases and Committee on Fetus and Newborn Revised guidelines for prevention of early-onset group B streptococcal (GBS) infection. Pediatrics. 1997;99:489–496. doi: 10.1542/peds.99.3.489. PubMed DOI
Croxatto A., Prod’hom G., Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012;36:380–407. doi: 10.1111/j.1574-6976.2011.00298.x. PubMed DOI
The European Committee on Antimicrobial Susceptibility Testing—EUCAST. [(accessed on 10 January 2015)]; Available online: https://www.eucast.org/
Röderova M., Halova D., Papousek I., Dolejska M., Masarikova M., Hanulik V., Pudova V., Broz P., Htoutou-Sedlakova M., Sauer P., et al. Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic. Front. Microbiol. 2017;7:2147. doi: 10.3389/fmicb.2016.02147. PubMed DOI PMC
Husickova V., Cekanova L., Chroma M., Htoutou-Sedlakova M., Hricova K., Kolář M. Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subjects and hospitalized patients in the Czech Republic. Biomed. Pap. 2012;156:348–353. doi: 10.5507/bp.2012.039. PubMed DOI
Tenover F.C., Arbeit R.D., Goering R.V., Mickelsen P.A., Murray B.E., Persing D.H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995;33:2233–2239. doi: 10.1128/JCM.33.9.2233-2239.1995. PubMed DOI PMC