Cholesterol modulates open probability and desensitization of NMDA receptors
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25651798
PubMed Central
PMC4457192
DOI
10.1113/jphysiol.2014.288209
Knihovny.cz E-zdroje
- MeSH
- anticholesteremika farmakologie MeSH
- beta-cyklodextriny farmakologie MeSH
- cholesterol oxidasa farmakologie MeSH
- cholesterol nedostatek fyziologie MeSH
- elektrofyziologické jevy fyziologie MeSH
- fluidita membrány účinky léků fyziologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- membránové lipidy fyziologie MeSH
- metoda terčíkového zámku MeSH
- mozeček cytologie účinky léků fyziologie MeSH
- nervové vedení fyziologie MeSH
- nervový přenos fyziologie MeSH
- potkani Wistar MeSH
- receptory N-methyl-D-aspartátu účinky léků fyziologie MeSH
- simvastatin farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anticholesteremika MeSH
- beta-cyklodextriny MeSH
- cholesterol oxidasa MeSH
- cholesterol MeSH
- membránové lipidy MeSH
- methyl-beta-cyclodextrin MeSH Prohlížeč
- receptory N-methyl-D-aspartátu MeSH
- simvastatin MeSH
NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid-NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs.
2nd Faculty of Medicine Charles University Prague Prague Czech Republic
Department of Physiology Faculty of Science Charles University Prague Prague Czech Republic
Zobrazit více v PubMed
Abulrob A, Tauskela JS, Mealing G, Brunette E, Faid K. Stanimirovic D. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution. J Neurochem. 2005;92:1477–1486. PubMed
Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I. Barrantes FJ. Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol Membr Biol. 2007;24:1–15. PubMed
Bosel J, Gandor F, Harms C, Synowitz M, Harms U, Djoufack PC, Megow D, Dirnagl U, Hortnagl H, Fink KB. Endres M. Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem. 2005;92:1386–1398. PubMed
Brannigan G, Henin J, Law R, Eckenhoff R. Klein ML. Embedded cholesterol in the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA. 2008;105:14418–14423. PubMed PMC
Bruses JL, Chauvet N. Rutishauser U. Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci. 2001;21:504–512. PubMed PMC
Cais O, Sedlacek M, Horak M, Dittert I. Vyklicky L., Jr Temperature dependence of NR1/NR2B NMDA receptor channels. Neuroscience. 2008;151:428–438. PubMed
Casado M. Ascher P. Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J Physiol. 1998;513(Pt 2):317–330. PubMed PMC
Cibickova L. Statins and their influence on brain cholesterol. J Clin Lipidol. 2011;5:373–379. PubMed
Clark BA, Farrant M. Cull-Candy SG. A direct comparison of the single-channel properties of synaptic and extrasynaptic NMDA receptors. J Neurosci. 1997;17:107–116. PubMed PMC
Colquhoun D. Sakmann B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol. 1985;369:501–557. PubMed PMC
Dalskov SM, Immerdal L, Niels-Christiansen LL, Hansen GH, Schousboe A. Danielsen EM. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochem Int. 2005;46:489–499. PubMed
Dietschy JM. Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45:1375–1397. PubMed
Distl R, Treiber-Held S, Albert F, Meske V, Harzer K. Ohm TG. Cholesterol storage and tau pathology in Niemann–Pick type C disease in the brain. J Pathol. 2003;200:104–111. PubMed
Endo A. A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86:484–493. PubMed PMC
Erreger K, Dravid SM, Banke TG, Wyllie DJ. Traynelis SF. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol. 2005;563:345–358. PubMed PMC
Farrant M, Feldmeyer D, Takahashi T. Cull-Candy SG. NMDA-receptor channel diversity in the developing cerebellum. Nature. 1994;368:335–339. PubMed
Frank C, Giammarioli AM, Pepponi R, Fiorentini C. Rufini S. Cholesterol perturbing agents inhibit NMDA-dependent calcium influx in rat hippocampal primary culture. FEBS Lett. 2004;566:25–29. PubMed
Frank C, Rufini S, Tancredi V, Forcina R, Grossi D. D'Arcangelo G. Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp Neurol. 2008;212:407–414. PubMed
Gimpl G, Burger K. Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36:10959–10974. PubMed
Hering H, Lin CC. Sheng M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci. 2003;23:3262–3271. PubMed PMC
Horak M, Vlcek K, Petrovic M, Chodounska H. Vyklicky L., Jr Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. J Neurosci. 2004;24:10318–10325. PubMed PMC
Christian AE, Haynes MP, Phillips MC. Rothblat GH. Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res. 1997;38:2264–2272. PubMed
Illinger D, Duportail G, Mely Y, Poirel-Morales N, Gerard D. Kuhry JG. A comparison of the fluorescence properties of TMA-DPH as a probe for plasma membrane and for endocytic membrane. Biochimica et biophysica acta. 1995;1239:58–66. PubMed
Jahr CE. High probability opening of NMDA receptor channels by L-glutamate. Science. 1992;255:470–472. PubMed
Korinek M, Sedlacek M, Cais O, Dittert I. Vyklicky L., Jr Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents. Neuroscience. 2010;165:736–748. PubMed
Lester RA. Jahr CE. NMDA channel behavior depends on agonist affinity. J Neurosci. 1992;12:635–643. PubMed PMC
Levitan I, Singh DK. Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front Physiol. 2014;5:65. PubMed PMC
Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B. Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS) Biochim Biophys Acta. 2006;1761:121–128. PubMed
Lichnerova K, Kaniakova M, Skrenkova K, Vyklicky L. Horak M. Distinct regions within the GluN2C subunit regulate the surface delivery of NMDA receptors. Front Cell Neurosci. 2014;8:375. PubMed PMC
Linsenbardt AJ, Taylor A, Emnett CM, Doherty JJ, Krishnan K, Covey DF, Paul SM, Zorumski CF. Mennerick S. Different oxysterols have opposing actions at N-methyl-d-aspartate receptors. Neuropharmacology. 2014;85C:232–242. PubMed PMC
Luo JH, Fu ZY, Losi G, Kim BG, Prybylowski K, Vissel B. Vicini S. Functional expression of distinct NMDA channel subunits tagged with green fluorescent protein in hippocampal neurons in culture. Neuropharmacology. 2002;42:306–318. PubMed
Miller B, Sarantis M, Traynelis SF. Attwell D. Potentiation of NMDA receptor currents by arachidonic acid. Nature. 1992;355:722–725. PubMed
Ogden KK. Traynelis SF. New advances in NMDA receptor pharmacology. Trends Pharmacol Sci. 2011;32:726–733. PubMed PMC
Ogden KK. Traynelis SF. Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Mol Pharmacol. 2013;83:1045–1056. PubMed PMC
Ohvo-Rekila H, Ramstedt B, Leppimaki P. Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41:66–97. PubMed
Ottico E, Prinetti A, Prioni S, Giannotta C, Basso L, Chigorno V. Sonnino S. Dynamics of membrane lipid domains in neuronal cells differentiated in culture. J Lipid Res. 2003;44:2142–2151. PubMed
Ozaki M, Sasner M, Yano R, Lu HS. Buonanno A. Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature. 1997;390:691–694. PubMed
Paila YD. Chattopadhyay A. The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj J. 2009;26:711–720. PubMed
Paul SM, Doherty JJ, Robichaud AJ, Belfort GM, Chow BY, Hammond RS, Crawford DC, Linsenbardt AJ, Shu HJ, Izumi Y, Mennerick SJ. Zorumski CF. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci. 2013;33:17290–17300. PubMed PMC
Pike LJ, Han X, Chung KN. Gross RW. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry. 2002;41:2075–2088. PubMed
Ponce J, de la Ossa NP, Hurtado O, Millan M, Arenillas JF, Davalos A. Gasull T. Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotection. Stroke. 2008;39:1269–1275. PubMed
Popescu G. Auerbach A. Modal gating of NMDA receptors and the shape of their synaptic response. Nat Neurosci. 2003;6:476–483. PubMed
Prybylowski K, Fu Z, Losi G, Hawkins LM, Luo J, Chang K, Wenthold RJ. Vicini S. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J Neurosci. 2002;22:8902–8910. PubMed PMC
Prybylowski K, Chang K, Sans N, Kan L, Vicini S. Wenthold RJ. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron. 2005;47:845–857. PubMed PMC
Rosenmund C, Feltz A. Westbrook GL. Synaptic NMDA receptor channels have a low open probability. J Neurosci. 1995;15:2788–2795. PubMed PMC
Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev. 2010;34:1366–1379. PubMed PMC
Simons K. Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. PubMed
Soderberg M, Edlund C, Kristensson K. Dallner G. Lipid compositions of different regions of the human brain during aging. J Neurochem. 1990;54:415–423. PubMed
Sooksawate T. Simmonds MA. Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology. 2001;40:178–184. PubMed
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ. Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62:405–496. PubMed PMC
Yeagle PL. Cholesterol and the cell membrane. Biochimica et biophysica acta. 1985;822:267–287. PubMed
Yuan H, Hansen KB, Vance KM, Ogden KK. Traynelis SF. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci. 2009;29:12045–12058. PubMed PMC
Zacco A, Togo J, Spence K, Ellis A, Lloyd D, Furlong S. Piser T. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci. 2003;23:11104–11111. PubMed PMC
Zervas M, Dobrenis K. Walkley SU. Neurons in Niemann–Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol. 2001;60:49–64. PubMed
Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant
Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor
Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission