Distinct regions within the GluN2C subunit regulate the surface delivery of NMDA receptors

. 2014 ; 8 () : 375. [epub] 20141110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25426025

N-methyl-D-aspartate (NMDA) receptors mediate fast excitatory synaptic transmission in the mammalian central nervous system. The activation of NMDA receptors plays a key role in brain development, synaptic plasticity, and memory formation, and is a major contributor to many neuropsychiatric disorders. Here, we investigated the mechanisms that underlie the trafficking of GluN1/GluN2C receptors. Using an approach combining molecular biology, microscopy, and electrophysiology in mammalian cell lines and cultured cerebellar granule cells, we found that the surface delivery of GluN2C-containing receptors is reduced compared to GluN2A- and GluN2B-containing receptors. Furthermore, we identified three distinct regions within the N-terminus, M3 transmembrane domain, and C-terminus of GluN2C subunits that are required for proper intracellular processing and surface delivery of NMDA receptors. These results shed new light on the regulation of NMDA receptor trafficking, and these findings can be exploited to develop new strategies for treating some forms of neuropsychiatric disorders.

Zobrazit více v PubMed

Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., Mizuno N. (1994). Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol. 347 150–160 10.1002/cne.903470112 PubMed DOI

Atlason P. T., Garside M. L., Meddows E., Whiting P., Mcllhinney R. A. (2007). N-Methyl-D-aspartate (n.d.) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J. Biol. Chem. 282 25299–25307 10.1074/jbc.M702778200 PubMed DOI

Cai L., Loo L. S., Atlashkin V., Hanson B. J., Hong W. (2011). Deficiency of sorting nexin 27 (SNX27) leads to growth retardation and elevated levels of N-methyl-D-aspartate receptor 2C (NR2C). Mol. Cell. Biol. 31 1734–1747 10.1128/MCB.01044-10 PubMed DOI PMC

Cao J. Y., Qiu S., Zhang J., Wang J. J., Zhang X. M., Luo J. H. (2011). Transmembrane region of N-methyl-D-aspartate receptor (NMDAR) subunit is required for receptor subunit assembly. J. Biol. Chem. 286 27698–27705 10.1074/jbc.M111.235333 PubMed DOI PMC

Chen B. S., Braud S., Badger J. D. II, Isaac J. T., Roche K. W. (2006). Regulation of NR1/NR2C N-methyl-D-aspartate (n.d.) receptors by phosphorylation. J. Biol. Chem. 281 16583–16590 10.1074/jbc.M513029200 PubMed DOI

Chen B. S., Roche K. W. (2009). Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron 62 471–478 10.1016/j.neuron.2009.04.015 PubMed DOI PMC

Chen N., Luo T., Raymond L. A. (1999). Subtype-dependence of NMDA receptor channel open probability. J. Neurosci. 19 6844–6854. PubMed PMC

Farina A. N., Blain K. Y., Maruo T., Kwiatkowski W., Choe S., Nakagawa T. (2011). Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J. Neurosci. 31 3565–3579 10.1523/JNEUROSCI.6041-10.2011 PubMed DOI PMC

Fukaya M., Kato A., Lovett C., Tonegawa S., Watanabe M. (2003). Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc. Natl. Acad. Sci. U.S.A. 100 4855–4860 10.1073/pnas.0830996100 PubMed DOI PMC

Greger I. H., Khatri L., Kong X., Ziff E. B. (2003). AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40 763–774 10.1016/S0896-6273(03)00668-8 PubMed DOI

Hansen K. B., Ogden K. K., Yuan H., Traynelis S. F. (2014). Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81 1084–1096 10.1016/j.neuron.2014.01.035 PubMed DOI PMC

Hawkins L. M., Prybylowski K., Chang K., Moussan C., Stephenson F. A., Wenthold R. J. (2004). Export from the endoplasmic reticulum of assembled N-methyl-D-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit. J. Biol. Chem. 279 28903–28910 10.1074/jbc.M402599200 PubMed DOI

Horak M., Chang K., Wenthold R. J. (2008). Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. J. Neurosci. 28 3500–3509 10.1523/JNEUROSCI.5239-07.2008 PubMed DOI PMC

Horak M., Vlcek K., Chodounska H., Vyklicky L., Jr. (2006). Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience 137 93–102 10.1016/j.neuroscience.2005.08.058 PubMed DOI

Horak M., Wenthold R. J. (2009). Different roles of C-terminal cassettes in the trafficking of full-length NR1 subunits to the cell surface. J. Biol. Chem. 284 9683–9691 10.1074/jbc.M807050200 PubMed DOI PMC

Ishii T., Moriyoshi K., Sugihara H., Sakurada K., Kadotani H., Yokoi M., et al. (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268 2836–2843. PubMed

Kadotani H., Namura S., Katsuura G., Terashima T., Kikuchi H. (1998). Attenuation of focal cerebral infarct in mice lacking NMDA receptor subunit NR2C. Neuroreport 9 471–475 10.1097/00001756-199802160-00021 PubMed DOI

Kaniakova M., Krausova B., Vyklicky V., Korinek M., Lichnerova K., Vyklicky L., et al. (2012a). Key amino acid residues within the third membrane domains of NR1 and NR2 subunits contribute to the regulation of the surface delivery of N-methyl-D-aspartate receptors. J. Biol. Chem. 287 26423–26434 10.1074/jbc.M112.339085 PubMed DOI PMC

Kaniakova M., Lichnerova K., Vyklicky L., Horak M. (2012b). Single amino acid residue in the M4 domain of GluN1 subunit regulates the surface delivery of NMDA receptors. J. Neurochem. 123 385–395 10.1111/jnc.12002 PubMed DOI

Kenny A. V., Cousins S. L., Pinho L., Stephenson F. A. (2009). The integrity of the glycine co-agonist binding site of N-methyl-D-aspartate receptors is a functional quality control checkpoint for cell surface delivery. J. Biol. Chem. 284 324–333 10.1074/jbc.M804023200 PubMed DOI

Lau C. G., Zukin R. S. (2007). NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8 413–426 10.1038/nrn2153 PubMed DOI

Lavezzari G., Mccallum J., Dewey C. M., Roche K. W. (2004). Subunit-specific regulation of NMDA receptor endocytosis. J. Neurosci. 24 6383–6391 10.1523/JNEUROSCI.1890-04.2004 PubMed DOI PMC

Lu C., Fu Z., Karavanov I., Yasuda R. P., Wolfe B. B., Buonanno A., et al. (2006). NMDA receptor subtypes at autaptic synapses of cerebellar granule neurons. J. Neurophysiol. 96 2282–2294 10.1152/jn.00078.2006 PubMed DOI

Luo J. H., Fu Z. Y., Losi G., Kim B. G., Prybylowski K., Vissel B., et al. (2002). Functional expression of distinct NMDA channel subunits tagged with green fluorescent protein in hippocampal neurons in culture. Neuropharmacology 42 306–318 10.1016/S0028-3908(01)00188-5 PubMed DOI

Madden D. R. (2002). The structure and function of glutamate receptor ion channels. Nat. Rev. Neurosci. 3 91–101 10.1038/nrn725 PubMed DOI

Marianowski R., Pollard H., Moreau J., Despres G., Ben Ari Y., Tran Ba Huy P., et al. (1995). N-Methyl-D-aspartate receptor subunits NR1 and NR2C are overexpressed in the inferior colliculus of audiogenic mice. Neurosci. Lett. 189 190–194 10.1016/0304-3940(95)11454-5 PubMed DOI

Mcllhinney R. A., Le Bourdelles B., Molnar E., Tricaud N., Streit P., Whiting P. J. (1998). Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37 1355–1367 10.1016/S0028-3908(98)00121-X PubMed DOI

Meddows E., Le Bourdelles B., Grimwood S., Wafford K., Sandhu S., Whiting P., et al. (2001). Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. J. Biol. Chem. 276 18795–18803 10.1074/jbc.M101382200 PubMed DOI

Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12 529–540 10.1016/0896-6273(94)90210-0 PubMed DOI

Mu Y., Otsuka T., Horton A. C., Scott D. B., Ehlers M. D. (2003). Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40 581–594 10.1016/S0896-6273(03)00676-7 PubMed DOI

Okabe S., Miwa A., Okado H. (1999). Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. 19 7781–7792. PubMed PMC

Paoletti P. (2011). Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 33 1351–1365 10.1111/j.1460-9568.2011.07628.x PubMed DOI

Petralia R. S., Al-Hallaq R. A., Wenthold R. J. (2009). “Trafficking and targeting of NMDA receptors,” in Biology of the NMDA Receptor ed. Van Dongen A. M. (Boca Raton, FL: CRC Press; ), 149–200. PubMed

Pollard H., Khrestchatisky M., Moreau J., Ben Ari Y. (1993). Transient expression of the NR2C subunit of the NMDA receptor in developing rat brain. Neuroreport 4 411–414 10.1097/00001756-199304000-00018 PubMed DOI

Prybylowski K., Chang K., Sans N., Kan L., Vicini S., Wenthold R. J. (2005). The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47 845–857 10.1016/j.neuron.2005.08.016 PubMed DOI PMC

Prybylowski K., Fu Z., Losi G., Hawkins L. M., Luo J., Chang K., et al. (2002). Relationship between availability of NMDA receptor subunits and their expression at the synapse. J. Neurosci. 22 8902–8910. PubMed PMC

Qiu S., Zhang X. M., Cao J. Y., Yang W., Yan Y. G., Shan L., et al. (2009). An endoplasmic reticulum retention signal located in the extracellular amino-terminal domain of the NR2A subunit of N-Methyl-D-aspartate receptors. J. Biol. Chem. 284 20285–20298 10.1074/jbc.M109.004960 PubMed DOI PMC

Rafiki A., Bernard A., Medina I., Gozlan H., Khrestchatisky M. (2000). Characterization in cultured cerebellar granule cells and in the developing rat brain of mRNA variants for the NMDA receptor 2C subunit. J. Neurochem. 74 1798–1808 10.1046/j.1471-4159.2000.0741798.x PubMed DOI

Ren H., Salous A. K., Paul J. M., Lipsky R. H., Peoples R. W. (2007). Mutations at F637 in the NMDA receptor NR2A subunit M3 domain influence agonist potency, ion channel gating and alcohol action. Br. J. Pharmacol. 151 749–757 10.1038/sj.bjp.0707254 PubMed DOI PMC

Salous A. K., Ren H., Lamb K. A., Hu X. Q., Lipsky R. H., Peoples R. W. (2009). Differential actions of ethanol and trichloroethanol at sites in the M3 and M4 domains of the NMDA receptor GluN2A (NR2A) subunit. Br. J. Pharmacol. 158 1395–1404 10.1111/j.1476-5381.2009.00397.x PubMed DOI PMC

Salussolia C. L., Corrales A., Talukder I., Kazi R., Akgul G., Bowen M., et al. (2011). Interaction of the M4 segment with other transmembrane segments is required for surface expression of mammalian AMPA receptors. J. Biol. Chem. 286 40205–40218 10.1074/jbc.M111.268839 PubMed DOI PMC

Sanz-Clemente A., Nicoll R. A., Roche K. W. (2012). Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19 62–75 10.1177/1073858411435129 PubMed DOI PMC

Schorge S., Colquhoun D. (2003). Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J. Neurosci. 23 1151–1158. PubMed PMC

Schuler T., Mesic I., Madry C., Bartholomaus I., Laube B. (2008). Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J. Biol. Chem. 283 37–46 10.1074/jbc.M703539200 PubMed DOI

Scott D. B., Michailidis I., Mu Y., Logothetis D., Ehlers M. D. (2004). Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J. Neurosci. 24 7096–7109 10.1523/JNEUROSCI.0780-04.2004 PubMed DOI PMC

Sprengel R., Suchanek B., Amico C., Brusa R., Burnashev N., Rozov A., et al. (1998). Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92 279–289 10.1016/S0092-8674(00)80921-6 PubMed DOI

Standley S., Roche K. W., Mccallum J., Sans N., Wenthold R. J. (2000). PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28 887–898 10.1016/S0896-6273(00)00161-6 PubMed DOI

Stephenson F. A., Cousins S. L., Kenny A. V. (2008). Assembly and forward trafficking of NMDA receptors (Review). Mol. Membr. Biol. 25 311–320 10.1080/09687680801971367 PubMed DOI

Traynelis S. F., Wollmuth L. P., Mcbain C. J., Menniti F. S., Vance K. M., Ogden K. K., et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62 405–496 10.1124/pr.109.002451 PubMed DOI PMC

Vissel B., Krupp J. J., Heinemann S. F., Westbrook G. L. (2001). A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4 587–596 10.1038/88404 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...