The presence of multiple variants of IncF plasmid alleles in a single genome sequence can hinder accurate replicon sequence typing using in silico pMLST tools

. 2025 May 20 ; 10 (5) : e0101024. [epub] 20250408

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40197103

Grantová podpora
NU22-09-00645 Ministerstvo Zdravotnictví Ceské Republiky
DRO 65269705 Ministerstvo Zdravotnictví Ceské Republiky
24-12527S Grantová Agentura České Republiky
206/2024/FVHE Veterinarni Univerzita Brno
LX22NPO5103 Faculty of Medicine in Pilsen, Charles University

UNLABELLED: IncF plasmids are mobile genetic elements found in bacteria from the Enterobacteriaceae family and often carry critical antibiotic and virulence gene cargo. The classification of IncF plasmids using the plasmid Multi-Locus Sequence Typing (pMLST) tool from the Center for Genomic Epidemiology (CGE; https://www.genomicepidemiology.org/) compares the sequences of IncF alleles against a database to create a plasmid sequence type (ST). Accurate identification of plasmid STs is useful as it enables an assessment of IncF plasmid lineages associated with pandemic enterobacterial STs. Our initial observations showed discrepancies in IncF allele variants reported by pMLST in a collection of 898 Escherichia coli ST131 genomes. To evaluate the limitations of the pMLST tool, we interrogated an in-house and public repository of 70,324 E. coli genomes of various STs and other Enterobacteriaceae genomes (n = 1247). All short-read assemblies and representatives selected for long-read sequencing were used to assess pMLST allele variants and to compare the output of pMLST tool versions. When multiple allele variants occurred in a single bacterial genome, the Python and web versions of the tool randomly selected one allele to report, leading to limited and inaccurate ST identification. Discrepancies were detected in 5,804 of 72,469 genomes (8.01%). Long-read sequencing of 27 genomes confirmed multiple IncF allele variants on one plasmid or two separate IncF plasmids in a single bacterial cell. The pMLST tool was unable to accurately distinguish allele variants and their location on replicons using short-read genome assemblies, or long-read genome assemblies if the same allele variant was present more than once. IMPORTANCE: Plasmid sequence type is crucial for describing IncF plasmids due to their capacity to carry important antibiotic and virulence gene cargo and consequently due to their association with disease-causing enterobacterial lineages exhibiting resistance to clinically relevant antibiotics in humans and food-producing animals. As a result, precise reporting of IncF allele variants in IncF plasmids is necessary. Comparison of the FAB formulae generated by the pMLST tool with annotated long-read genome assemblies identified inconsistencies, including examples where multiple IncF allele variants were present on the same plasmid but missing in the FAB formula, or in cases where two IncF plasmids were detected in one bacterial cell, and the pMLST output provided information only about one plasmid. Such inconsistencies may cloud interpretation of IncF plasmid replicon type in specific bacterial lineages or inaccurate assumptions of host strain clonality.

Zobrazit více v PubMed

Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238. doi:10.1128/AAC.01707-08 PubMed DOI PMC

Johnson TJ, Nolan LK. 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73:750–774. doi:10.1128/MMBR.00015-09 PubMed DOI PMC

Osborn AM, da Silva Tatley FM, Steyn LM, Pickup RW, Saunders JR. 2000. Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology (Reading) 146 (Pt 9):2267–2275. doi:10.1099/00221287-146-9-2267 PubMed DOI

Mathers AJ, Peirano G, Pitout JDD. 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 28:565–591. doi:10.1128/CMR.00116-14 PubMed DOI PMC

Villa L, García-Fernández A, Fortini D, Carattoli A. 2010. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 65:2518–2529. doi:10.1093/jac/dkq347 PubMed DOI

Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi:10.1128/AAC.02412-14 PubMed DOI PMC

Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J. 2018. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 73:1121–1137. doi:10.1093/jac/dkx488 PubMed DOI

Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, Nolan LK. 2007. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 73:1976–1983. doi:10.1128/AEM.02171-06 PubMed DOI PMC

Phan MD, Forde BM, Peters KM, Sarkar S, Hancock S, Stanton-Cook M, Ben Zakour NL, Upton M, Beatson SA, Schembri MA. 2015. Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone. PLoS One 10:e0122369. doi:10.1371/journal.pone.0122369 PubMed DOI PMC

Kutilova I, Medvecky M, Leekitcharoenphon P, Munk P, Masarikova M, Davidova-Gerzova L, Jamborova I, Bortolaia V, Pamp SJ, Dolejska M. 2021. Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: Culture-based and metagenomic approaches. Environ Res 193:110487. doi:10.1016/j.envres.2020.110487 PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2 PubMed DOI

Redondo-Salvo S, Bartomeus-Peñalver R, Vielva L, Tagg KA, Webb HE, Fernández-López R, de la Cruz F. 2021. COPLA, a taxonomic classifier of plasmids. BMC Bioinformatics 22:390. doi:10.1186/s12859-021-04299-x PubMed DOI PMC

Liao Y-C, Cheng H-W, Wu H-C, Kuo S-C, Lauderdale T-LY, Chen F-J. 2019. Completing circular bacterial genomes with assembly complexity by using a sampling strategy from a single MinION run with barcoding. Front Microbiol 10:2068. doi:10.3389/fmicb.2019.02068 PubMed DOI PMC

Reid CJ, Cummins ML, Börjesson S, Brouwer MSM, Hasman H, Hammerum AM, Roer L, Hess S, Berendonk T, Nešporová K, Haenni M, Madec J-Y, Bethe A, Michael GB, Schink A-K, Schwarz S, Dolejska M, Djordjevic SP. 2022. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat Commun 13:683. doi:10.1038/s41467-022-28342-4 PubMed DOI PMC

Cummins ML, Li D, Ahmad A, Bushell R, Noormohammadi AH, Wijesurendra DS, Stent A, Marenda MS, Djordjevic SP. 2023. Whole genome sequencing of avian pathogenic Escherichia coli causing bacterial chondronecrosis and osteomyelitis in australian poultry. Microorganisms 11:1513. doi:10.3390/microorganisms11061513 PubMed DOI PMC

Yang Q-E, Sun J, Li L, Deng H, Liu B-T, Fang L-X, Liao X-P, Liu Y-H. 2015. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Front Microbiol 6:964. doi:10.3389/fmicb.2015.00964 PubMed DOI PMC

Wyrsch E. R., Bushell RN, Marenda MS, Browning GF, Djordjevic SP. 2022. Global phylogeny and F virulence plasmid carriage in pandemic Escherichia coli ST1193. Microbiol Spectr 10:e02554-22. doi:10.1128/spectrum.02554-22 PubMed DOI PMC

Elankumaran P, Cummins ML, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. 2022. Genomic and temporal trends in canine ExPEC reflect those of human ExPEC. Microbiol Spectr 10:e01291-22. doi:10.1128/spectrum.01291-22 PubMed DOI PMC

Davidova-Gerzova L, Lausova J, Sukkar I, Nesporova K, Nechutna L, Vlkova K, Chudejova K, Krutova M, Palkovicova J, Kaspar J, Dolejska M. 2023. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli Front Cell Infect Microbiol 13:1184081. doi:10.3389/fcimb.2023.1184081 PubMed DOI PMC

Wyrsch Ethan R, Hoye BJ, Sanderson-Smith M, Gorman J, Maute K, Cummins ML, Jarocki VM, Marenda MS, Dolejska M, Djordjevic SP. 2024. The faecal microbiome of the Australian silver gull contains phylogenetically diverse ExPEC, aEPEC and Escherichia coli carrying the transmissible locus of stress tolerance. Sci Total Environ 919:170815. doi:10.1016/j.scitotenv.2024.170815 PubMed DOI

Wyrsch ER, Nesporova K, Tarabai H, Jamborova I, Bitar I, Literak I, Dolejska M, Djordjevic SP. 2022. Urban wildlife crisis: Australian silver gull is a bystander host to widespread clinical antibiotic resistance. mSystems 7:e00158-22. doi:10.1128/msystems.00158-22 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...