The heterogeneity-diversity-system performance nexus
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37575691
PubMed Central
PMC10423029
DOI
10.1093/nsr/nwad109
PII: nwad109
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity-ecosystem functioning, diversity, global change, heterogeneity, homogenization,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ever-growing human population and nutritional demands, supply chain disruptions, and advancing climate change have led to the realization that changes in diversity and system performance are intimately linked. Moreover, diversity and system performance depend on heterogeneity. Mitigating changes in system performance and promoting sustainable living conditions requires transformative decisions. Here, we introduce the heterogeneity-diversity-system performance (HDP) nexus as the conceptual basis upon which to formulate transformative decisions. We suggest that managing the heterogeneity of systems will best allow diversity to provide multiple benefits to people. Based on ecological theory, we pose that the HDP nexus is broadly applicable across systems, disciplines, and sectors, and should thus be considered in future decision making as a way to have a more sustainable global future.
CEFE Univ Montpellier CNRS EPHE IRD 1919 route de Mende F 34293 Montpellier Cedex 5 France
Institute of Biology Leipzig University Puschstr 4 Leipzig 04103Germany
Leipzig Institute for Meteorology Universität Leipzig Stephanstraße 3 Leipzig 04103 Germany
Zobrazit více v PubMed
Jongman RHG. Homogenisation and fragmentation of the European landscape: ecological consequences and solutions. Landsc Urban Plan 2002; 58: 211–21.10.1016/S0169-2046(01)00222-5 DOI
Batáry P, Gallé R, Riesch Fet al. . The former Iron Curtain still drives biodiversity-profit trade-offs in German agriculture. Nat Ecol Evol 2017;1: 1279–84.10.1038/s41559-017-0272-x PubMed DOI
Leclère D, Obersteiner M, Barrett Met al. . Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 2020; 585: 551–6.10.1038/s41586-020-2705-y PubMed DOI
Meyfroidt P, de Bremond A, Ryan CMet al. . Ten facts about land systems for sustainability. Proc Natl Acad Sci USA 2022; 119: e2109217118. 10.1073/pnas.210921711810.1073/pnas.2109217118 PubMed DOI PMC
Palomo I, Locatelli B, Otero Iet al. . Assessing nature-based solutions for transformative change. One Earth 2021;4: 730–41.10.1016/j.oneear.2021.04.013 DOI
May RM. Will a large complex system be stable? Nature 1972; 238: 413–4.10.1038/238413a0 PubMed DOI
May R . Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press, 2001.
Jousset A, Schmid B, Scheu Set al. . Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecol Lett 2011; 14: 537–45.10.1111/j.1461-0248.2011.01613.x PubMed DOI
Cardinale BJ, Duffy JE, Gonzalez Aet al. . Correction: Corrigendum: Biodiversity loss and its impact on humanity. Nature 2012; 489: 326.10.1038/nature11373 PubMed DOI
Hooper DU, Bignell DE, Brown VKet al. . Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks: we assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms could lead to positive, negative, or no relationship—depending on the strength and type of interactions among species. Bioscience 2000; 50: 1049–61.10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 DOI
Scherber C, Eisenhauer N, Weisser WWet al. . Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 2010; 468: 553–6.10.1038/nature09492 PubMed DOI
Eisenhauer N, Dobies T, Cesarz Set al. . Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA 2013; 110: 6889–94.10.1073/pnas.1217382110 PubMed DOI PMC
Cooney CR, He Y, Varley ZKet al. . Latitudinal gradients in avian colourfulness. Nat Ecol Evol 2022; 6: 622–9.10.1038/s41559-022-01714-1 PubMed DOI
Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001; 412: 72–6.10.1038/35083573 PubMed DOI
Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 2000; 31: 343–66.10.1146/annurev.ecolsys.31.1.343 DOI
Hardin G. The competitive exclusion principle. Science 1960; 131: 1292–7.10.1126/science.131.3409.1292 PubMed DOI
Turnbull LA, Isbell F, Purves DWet al. . Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc R Soc B 2016; 283: 20160536.10.1098/rspb.2016.053610.1098/rspb.2016.0536 PubMed DOI PMC
Allouche O, Kalyuzhny M, Moreno-Rueda Get al. . Area-heterogeneity tradeoff and the diversity of ecological communities. Proc Natl Acad Sci USA 2012; 109: 17495–500.10.1073/pnas.1208652109 PubMed DOI PMC
Naeem S, Li S. Biodiversity enhances ecosystem reliability. Nature 1997; 390: 507–9.10.1038/37348 DOI
Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 1999; 96: 1463–8.10.1073/pnas.96.4.1463 PubMed DOI PMC
Loreau M, Barbier M, Filotas Eet al. . Biodiversity as insurance: from concept to measurement and application. Biol Rev 2021; 96: 2333–54.10.1111/brv.12756 PubMed DOI PMC
Wang S, Isbell F, Deng Wet al. . How complementarity and selection affect the relationship between ecosystem functioning and stability. Ecology 2021; 102: e03347.10.1002/ecy.3347 PubMed DOI
Lefcheck JS, Byrnes JEK, Isbell Fet al. . Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun 2015;6: 6936.10.1038/ncomms7936 PubMed DOI PMC
Isbell F, Gonzalez A, Loreau Met al. . Linking the influence and dependence of people on biodiversity across scales. Nature 2017; 546: 65–72.10.1038/nature22899 PubMed DOI PMC
Cardinale BJ, Matulich KL, Hooper DUet al. . The functional role of producer diversity in ecosystems. Am J Bot 2011; 98: 572–92.10.3732/ajb.1000364 PubMed DOI
Cardinale BJ, Srivastava DS, Duffy JEet al. . Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 2006; 443: 989–92.10.1038/nature05202 PubMed DOI
Cardinale BJ, Wright JP, Cadotte MWet al. . Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 2007; 104: 18123–8.10.1073/pnas.0709069104 PubMed DOI PMC
Reich PB, Tilman D, Isbell Fet al. . Impacts of biodiversity loss escalate through time as redundancy fades. Science 2012; 336: 589–92.10.1126/science.1217909 PubMed DOI
Isbell F, Craven D, Connolly Jet al. . Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015; 526: 574–7.10.1038/nature15374 PubMed DOI
Liang J, Crowther TW, Picard Net al. . Positive biodiversity-productivity relationship predominant in global forests. Science 2016; 354: 6309.10.1126/science.aaf8957 PubMed DOI
Duffy JE, Godwin CM, Cardinale BJ. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 2017; 549: 261–4.10.1038/nature23886 PubMed DOI
Wagg C, Roscher C, Weigelt Aet al. . Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat Commun 2022; 13: 7752.10.1038/s41467-022-35189-2 PubMed DOI PMC
Eisenhauer N, Schielzeth H, Barnes ADet al. . A multitrophic perspective on biodiversity-ecosystem functioning research. Adv Ecol Res 2019; 61: 1–54.10.1016/bs.aecr.2019.06.001 PubMed DOI PMC
Wright AJ, Wardle DA, Callaway Ret al. . The overlooked role of facilitation in biodiversity experiments. Trends Ecol Evol 2017; 32: 383–90.10.1016/j.tree.2017.02.011 PubMed DOI
Isbell F, Adler PR, Eisenhauer Net al. . Benefits of increasing plant diversity in sustainable agroecosystems. J Ecol 2017; 105: 871–9.10.1111/1365-2745.12789 DOI
Jactel H, Gritti ES, Drössler Let al. . Positive biodiversity–productivity relationships in forests: climate matters. Biol Lett 2018; 14: 20170747.10.1098/rsbl.2017.074710.1098/rsbl.2017.0747 PubMed DOI PMC
Barry KE, Mommer L, van Ruijven Jet al. . The future of complementarity: disentangling causes from consequences. Trends Ecol Evol 2019; 34: 167–80.10.1016/j.tree.2018.10.013 PubMed DOI
Hodapp D, Hillebrand H, Blasius Bet al. . Environmental and trait variability constrain community structure and the biodiversity-productivity relationship. Ecology 2016; 97: 1463–74.10.1890/15-0730.1 PubMed DOI
Mouquet N, Moore JL, Loreau M. Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecol Letters 2002;5: 56–65.10.1046/j.1461-0248.2002.00281.x DOI
Norberg J, Swaney DP, Dushoff Jet al. . Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proc Natl Acad Sci USA 2001; 98: 11376–81.10.1073/pnas.171315998 PubMed DOI PMC
Riofrío J, del Río M, Pretzsch Het al. . Changes in structural heterogeneity and stand productivity by mixing Scots pine and Maritime pine. Forest Ecol Manag 2017; 405: 219–28.10.1016/j.foreco.2017.09.036 DOI
Hammill E, Hawkins CP, Greig HSet al. . Landscape heterogeneity strengthens the relationship between β-diversity and ecosystem function. Ecology 2018; 99: 2467–75.10.1002/ecy.2492 PubMed DOI
Tylianakis JM, Rand TA, Kahmen Aet al. . Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol 2008;6: e122.10.1371/journal.pbio.0060122 DOI
Lieberman D, Lieberman M. The causes and consequences of synchronous flushing in a dry tropical forest. Biotropica 1984; 16: 193–201.10.2307/2388052 DOI
Craven D, Eisenhauer N, Pearse WDet al. . Multiple facets of biodiversity drive the diversity–stability relationship. Nat Ecol Evol 2018; 2: 1579–87. PubMed
Blonder B. Hypervolume concepts in niche- and trait-based ecology. Ecography 2018; 41: 1441–55.10.1111/ecog.03187 DOI
Hutchinson GE. Concluding remarks. Cold Spring Harbor Symp Quant Biol 1957; 22: 415–27.10.1101/SQB.1957.022.01.039 DOI
Holt RD. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA 2009; 106: 19659–65.10.1073/pnas.0905137106 PubMed DOI PMC
Vandermeer J. The interference production principle: an ecological theory for agriculture. BioScience 1981; 31: 361–4.10.2307/1308400 DOI
Bannar-Martin KH, Kremer CT, Ernest SKMet al. . Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach. Ecol Lett 2018; 21: 167–80.10.1111/ele.12895 PubMed DOI
Paine RT. Food web complexity and species diversity. Am Nat 1966; 100: 65–75.10.1086/282400 DOI
May RM. Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press, 2001.
May RM. Network structure and the biology of populations. Trends Ecol Evol 2006; 21: 394–9.10.1016/j.tree.2006.03.013 PubMed DOI
Petchey OL, Beckerman AP, Riede JOet al. . Size, foraging, and food web structure. Proc Natl Acad Sci USA 2008; 105: 4191–6.10.1073/pnas.0710672105 PubMed DOI PMC
May RM. Stability in multispecies community models. Math Biosci 1971; 12: 59–79.10.1016/0025-5564(71)90074-5 DOI
Petchey OL, McPhearson PT, Casey TMet al. . Environmental warming alters food-web structure and ecosystem function. Nature 1999; 402: 69–72.10.1038/47023 DOI
McCann K, Hastings A, Huxel GR. Weak trophic interactions and the balance of nature. Nature 1998; 395: 794–8.10.1038/27427 DOI
Berlow EL. Strong effects of weak interactions in ecological communities. Nature 1999; 398: 330–4.10.1038/18672 DOI
Berlow EL, Brose U, Martinez ND. The “Goldilocks factor” in food webs. Proc Natl Acad Sci USA 2008; 105: 4079–80.10.1073/pnas.0800967105 PubMed DOI PMC
Allesina S, Tang S. Stability criteria for complex ecosystems. Nature 2012; 483: 205–8.10.1038/nature10832 PubMed DOI
Gellner G, McCann KS. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nat Commun 2016; 7: 11180.10.1038/ncomms11180 PubMed DOI PMC
Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006; 103: 8577–82.10.1073/pnas.0601602103 PubMed DOI PMC
Stouffer DB, Bascompte J. Compartmentalization increases food-web persistence. Proc Natl Acad Sci USA 2011; 108: 3648–52.10.1073/pnas.1014353108 PubMed DOI PMC
Guimerà R, Stouffer DB, Sales-Pardo Met al. . Origin of compartmentalization in food webs. Ecology 2010; 91: 2941–51.10.1890/09-1175.1 PubMed DOI
Krause AE, Frank KA, Mason DMet al. . Compartments revealed in food-web structure. Nature 2003; 426: 282–5.10.1038/nature02115 PubMed DOI
Macfadyen S, Gibson RH, Symondson WOCet al. . Landscape structure influences modularity patterns in farm food webs: consequences for pest control. Ecol Appl 2011; 21: 516–24.10.1890/09-2111.1 PubMed DOI PMC
Montoya D, Yallop ML, Memmott J. Functional group diversity increases with modularity in complex food webs. Nat Commun 2015; 6: 7379.10.1038/ncomms8379 PubMed DOI PMC
Solé R, Bascompte J. Self-Organization in Complex Ecosystems. (MPB-42). Princeton, NJ: Princeton University Press, 2012.
May RM, Levin SA, Sugihara G. Complex systems: ecology for bankers. Nature 2008; 451: 893–4.10.1038/451893a PubMed DOI
Winemiller KO. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 1990; 60: 331–67.10.2307/1943061 DOI
Huffaker CB. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilg 1958; 27: 343–83.10.3733/hilg.v27n14p343 DOI
Ong TWY, Allen D, Vandermeer J. Huffaker revisited: spatial heterogeneity and the coupling of ineffective agents in biological control. Ecosphere 2018; 9: e02299.10.1002/ecs2.229910.1002/ecs2.2299 PubMed DOI PMC
Estrada-Carmona N, Sánchez AC, Remans Ret al. . Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc Natl Acad Sci USA 2022; 119: e2203385119.10.1073/pnas.2203385119 PubMed DOI PMC
Ryser R, Hirt MR, Häussler Jet al. . Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects. Nat Commun 2021; 12: 4716.10.1038/s41467-021-24877-0 PubMed DOI PMC
Chen Y, Shen Y, Lin Pet al. . Gene regulatory network stabilized by pervasive weak repressions: microRNA functions revealed by the May–Wigner theory. Natl Sci Rev 2019; 6: 1176–88.10.1093/nsr/nwz076 PubMed DOI PMC
Dainese M, Martin EA, Aizen MAet al. . A global synthesis reveals biodiversity-mediated benefits for crop production. Sci Adv 2019; 5: eaax0121.10.1126/sciadv.aax0121 PubMed DOI PMC
Plas F, Allan E, Fischer Met al. . Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J Appl Ecol 2019; 56: 168–79.10.1111/1365-2664.13260 DOI
Tscharntke T, Klein AM, Kruess Aet al. . Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 2005; 8: 857–74.10.1111/j.1461-0248.2005.00782.x DOI
Wittwer RA, Bender SF, Hartman Ket al. . Organic and conservation agriculture promote ecosystem multifunctionality. Sci Adv 2021; 7: eabg6995.10.1126/sciadv.abg6995 PubMed DOI PMC
Pellegrini P, Fernández RJ. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc Natl Acad Sci USA 2018; 115: 2335–40.10.1073/pnas.1717072115 PubMed DOI PMC
Díaz S, Zafra-Calvo N, Purvis Aet al. . Set ambitious goals for biodiversity and sustainability. Science 2020; 370: 411–3.10.1126/science.abe1530 PubMed DOI
Soliveres S, van der Plas F, Manning Pet al. . Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 2016; 536: 456–9.10.1038/nature19092 PubMed DOI
Qiu J, Turner MG. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 2015; 6: 1–19.10.1890/ES15-00312.1 DOI
Khoury CK, Bjorkman AD, Dempewolf Het al. . Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci USA 2014; 111: 4001–6.10.1073/pnas.1313490111 PubMed DOI PMC
Wibowo MC, Yang Z, Borry Met al. . Reconstruction of ancient microbial genomes from the human gut. Nature 2021; 594: 234–9.10.1038/s41586-021-03532-0 PubMed DOI PMC
Williams J. Competition and Efficiency in International Food Supply Chains: Improving Food Security. London, New York: Routledge, 2012.
Grimm NB, Faeth SH, Golubiewski NEet al. . Global change and the ecology of cities. Science 2008; 319: 756–60.10.1126/science.1150195 PubMed DOI
Lepczyk CA, La Sorte FA, Aronson MFJet al. . Global patterns and drivers of urban bird diversity. In: Murgui E, Hedblom M (eds.). Ecology and Conservation of Birds in Urban Environments. Cham: Springer International Publishing, 2017, 13–33.
Evans BS, Reitsma R, Hurlbert AHet al. . Environmental filtering of avian communities along a rural-to-urban gradient in Greater Washington, D.C., USA. Ecosphere 2018; 9: e02402.10.1002/ecs2.2402 DOI
Santangelo JS, Ness RW, Cohan Bet al. . Global urban environmental change drives adaptation in white clover. Science 2022; 375: 1275–81.10.1126/science.abk0989 PubMed DOI
Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature 2014; 515: 518–22.10.1038/nature13959 PubMed DOI
Behrens P, Kiefte-de Jong JC, Bosker Tet al. . Evaluating the environmental impacts of dietary recommendations. Proc Natl Acad Sci USA 2017; 114: 13412–7.10.1073/pnas.1711889114 PubMed DOI PMC
Smits SA, Leach J, Sonnenburg EDet al. . Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 2017; 357: 802–6.10.1126/science.aan4834 PubMed DOI PMC
Reynolds A, Mann J, Cummings Jet al. . Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet North Am Ed 2019; 393: 434–45.10.1016/S0140-6736(18)31809-9 PubMed DOI
Makki K, Deehan EC, Walter Jet al. . The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 2018; 23: 705–15.10.1016/j.chom.2018.05.012 PubMed DOI
Zhao L, Zhang F, Ding Xet al. . Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018; 359: 1151–6.10.1126/science.aao5774 PubMed DOI
Deehan EC, Duar RM, Armet AMet al. . Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microbiol Spectr 2017; 5: 5.5.04.10.1128/microbiolspec.BAD-0019-201710.1128/microbiolspec.BAD-0019-2017 PubMed DOI PMC
Marselle MR, Bowler DE, Watzema Jet al. . Urban street tree biodiversity and antidepressant prescriptions. Sci Rep 2020; 10: 22445.10.1038/s41598-020-79924-5 PubMed DOI PMC
Corbett J, Mellouli S. Winning the SDG battle in cities: how an integrated information ecosystem can contribute to the achievement of the 2030 sustainable development goals. Info Systems J 2017; 27:427–61.10.1111/isj.12138 DOI
Zupancic T, Bulthuis M, Westmacott C. The impact of green space on heat and air pollution in urban communities. 2015.
Kumar P, Druckman A, Gallagher Jet al. . The nexus between air pollution, green infrastructure and human health. Environ Int 2019; 133:105181.10.1016/j.envint.2019.105181 PubMed DOI
Wong NH, Tan CL, Kolokotsa DDet al. . Greenery as a mitigation and adaptation strategy to urban heat. Nat Rev Earth Environ 2021;2: 166–81.
Lai L, Rios P. Housing design for socialisation and wellbeing. Journal of Urban Design and Mental Health 2017; 3: 12.
Roy S, Byrne J, Pickering C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry & Urban Greening 2012; 11: 351–63.10.1016/j.ufug.2012.06.006 DOI
Pariser E. The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think. New York, NY, USA: Penguin Publishing Group, 2012.
Cho J, Roy S. Impact of search engines on page popularity. Proceedings of the 13th International Conference on World Wide Web. New York, NY, USA: Association for Computing Machinery, 2004, 20–9.
Nikolov D, Lalmas M, Flammini Aet al. . Quantifying biases in online information exposure. J Am Soc Inf Sci 2019; 70: 218–29.10.1002/asi.24121 DOI
Jun Y, Meng R, Johar GV. Perceived social presence reduces fact-checking. Proc Natl Acad Sci USA 2017; 114: 5976–81.10.1073/pnas.1700175114 PubMed DOI PMC
Ely RJ, Thomas DA. Cultural diversity at work: the effects of diversity perspectives on work group processes and outcomes. Adm Sci Q 2001; 46: 229–73.10.2307/2667087 DOI
Bouncken R, Brem A, Kraus S. Multi-cultural teams as sources for creativity and innovation: the role of cultural diversity on team performance. Int J Innov Mgt 2016; 20: 1650012.10.1142/S1363919616500122 DOI
Ingersoll K, Malesky E, Saiegh SM. Heterogeneity and team performance: evaluating the effect of cultural diversity in the world's top soccer league. JSA 2017; 3: 67–92.10.3233/JSA-170052 DOI
Wang J, Thijs B, Glänzel W. Interdisciplinarity and impact: distinct effects of variety, balance, and disparity. PLoS One 2015; 10: e0127298.10.1371/journal.pone.0127298 PubMed DOI PMC
Larivière V, Haustein S, Börner K. Long-distance interdisciplinarity leads to higher scientific impact. PLoS One 2015; 10: e0122565.10.1371/journal.pone.0122565 PubMed DOI PMC
Tripathi AD, Mishra R, Maurya KKet al. . Chapter 1 – Estimates for world population and global food availability for global health. In: Singh RB, Watson RR, Takahashi T (eds.). The Role of Functional Food Security in Global Health. Elsevier, London, United Kingdom: Academic Press, 2019, 3–24.
Katsaliaki K, Galetsi P, Kumar S. Supply chain disruptions and resilience: a major review and future research agenda. Ann Oper Res 2022; 319: 965–1002. PubMed PMC
IPCC . Climate Change 2022 –Mitigation of Climate Change: Summary for Policymakers 2022. Cambridge: Cambridge University Press and New York, NY: IPCC, 2022.
Mace GM, Barrett M, Burgess NDet al. . Aiming higher to bend the curve of biodiversity loss. Nat Sustain 2018; 1: 448–51.10.1038/s41893-018-0130-0 DOI
Pörtner H-O, Scholes RJ, Agard J. et al. IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change, 2021.
Tilman D, Balzer C, Hill Jet al. . Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 2011; 108: 20260–4.10.1073/pnas.1116437108 PubMed DOI PMC
Foley JA, Ramankutty N, Brauman KAet al. . Solutions for a cultivated planet. Nature 2011; 478: 337–42.10.1038/nature10452 PubMed DOI
van Bruggen AHC, Goss EM, Havelaar Aet al. . One Health – cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci Total Environ 2019; 664: 927–37.10.1016/j.scitotenv.2019.02.091 PubMed DOI
Yan Z, Xiong C, Liu Het al. . Sustainable agricultural practices contribute significantly to One Health. J Sustain Agric 2022; 1: 165–76.10.1002/sae2.12019 DOI
Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature 2015; 528: 69–76. PubMed
Banerjee S, van der Heijden MGA. Soil microbiomes and one health. Nat Rev Microbiol 2023; 21: 6–20.10.1038/s41579-022-00779-w PubMed DOI
Pereira HM, Ferrier S, Walters Met al. . Essential biodiversity variables. Science 2013; 339: 277–8.10.1126/science.1229931 PubMed DOI
Lehmann A, Masò J, Nativi Set al. . Towards integrated essential variables for sustainability. Int J Digital Earth 2020; 13: 158–65.10.1080/17538947.2019.1636490 DOI
Hayes KR, Dambacher JM, Hosack GRet al. . Identifying indicators and essential variables for marine ecosystems. Ecol Indic 2015; 57: 409–19.10.1016/j.ecolind.2015.05.006 DOI
Ambrosone M, Giuliani G, Chatenoux Bet al. . Definition of candidate essential variables for the monitoring of mineral resource exploitation. Geo-spatial Information Science 2019; 22: 265–78.10.1080/10095020.2019.1635318 DOI
Visseren-Hamakers IJ, Razzaque J, McElwee Pet al. . Transformative governance of biodiversity: insights for sustainable development. Curr Opin Environ Sustain 2021; 53: 20–8.10.1016/j.cosust.2021.06.002 DOI