anthropogenic pollution
Dotaz
Zobrazit nápovědu
Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social approaches to mitigate global chemical pollution that emphasize a preventative approach; coordinate pollution control and sustainability efforts; and facilitate implementation of multiple (and potentially decentralized) control efforts involving scientists, civil society, government, non-governmental organizations and international bodies.
Handbook of environmental chemistry, ISSN 1433-6847 vol. 3
XIV, 294 s. : il., tab., grafy ; 24 cm
- MeSH
- chemické látky znečišťující vodu statistika a číselné údaje MeSH
- doprava statistika a číselné údaje MeSH
- environmentální zdraví statistika a číselné údaje MeSH
- látky znečišťující vzduch statistika a číselné údaje MeSH
- maximální přípustná koncentrace statistika a číselné údaje MeSH
- vystavení vlivu životního prostředí statistika a číselné údaje MeSH
- znečištění životního prostředí statistika a číselné údaje MeSH
- Publikační typ
- příručky MeSH
- Konspekt
- Chemie. Mineralogické vědy
- NLK Obory
- chemie, klinická chemie
- environmentální vědy
We studied the differences in a microbial community structure with respect to the water pollution level and seasonal changes. The determination of phylogenetic groups of Bacteria and Archaea was done using fluorescent in situ hybridization (FISH). The total number of microorganisms was determined by direct counting of DAPI (4',6-diamidino-2-phenylindole) stained samples using a fluorescence microscope. Our results showed that the microbial community structure was significantly dependent on the level of water pollution, both in absolute microbial counts and in relative abundance of phylogenetic groups. For surface water with anthropogenic pollution, the microbial community with significant proportion of Betaproteobacteria and Cytophaga-Flavobacterium was characteristic. Gammaproteobacteria were significant in municipal waste water. In microbial communities with low numbers of microorganisms (e.g. non-polluted water and some industrial waste water) represented the significant component groups Alphaproteobacteria and Archaea. The impact of seasonal changes on the microbial distribution was not significant.
- MeSH
- Archaea klasifikace účinky léků genetika MeSH
- Bacteria klasifikace účinky léků genetika MeSH
- hybridizace in situ fluorescenční MeSH
- látky znečišťující vodu toxicita MeSH
- mikrobiologie vody MeSH
- monitorování životního prostředí MeSH
- roční období MeSH
- znečištění vody škodlivé účinky analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite wastewater treatment, sewage sludge is often contaminated with multiple pollutants. Their impact on the phylogenetic composition and diversity of prokaryotic communities in sludge samples remains largely unknown. In this study, we analyzed the phylogenetic structure of bacterial communities and diversity in sludge from six waste water treatment plants (WWTPs) and linked this information with the pollutants identified in these samples: eight potentially toxic metals (PTMs) and four groups of organic pollutants [polychlorinated biphenyls (PCBs), polyromantic hydrocarbons (PAHs), brominated flame retardants (BFRs) and organochlorine pesticides (OCPs)]. Alpha diversity measures and the distribution of dominant phyla varied among the samples, with the community from the thermophilic anaerobic digestion (TAD)-stabilized sample from Prague being the least rich and the least diverse and containing on average 36% of 16S rRNA gene sequence reads of the thermotolerant genus Coprothermobacter of the class Clostridia (phylum Firmicutes). Using weighted UniFrac distance-based redundancy analysis (dbRDA), we found that a collection of 5 PTMs: Cr, Cu, Ni, Pb, Zn, and a pair of BFRs: hexabromocyclododecane (HBCD) and tribromodiphenyl ethers (triBDEs) were significantly associated with the bacterial community structure in mesophilic anaerobic digestion (MAD)-stabilized samples, whereas PCBs were observed to be marginally significant. Altogether, 85% of the variance in bacterial community structure could be ascribed to these pollutants. The data presented here contribute to a greater understanding of the ecological effects of combined pollution on the composition and diversity of bacterial communities, hence have the potential to aid in predicting ecosystem functions and/or disruptions associated with pollution.
- MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- bromované uhlovodíky analýza MeSH
- chemické látky znečišťující vodu analýza MeSH
- ekosystém MeSH
- fylogeneze MeSH
- odpadní vody chemie mikrobiologie MeSH
- pesticidy analýza MeSH
- polybrombifenylové sloučeniny analýza MeSH
- polychlorované bifenyly analýza MeSH
- retardanty hoření analýza MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
In order to monitor Potentially Toxic Elements (PTEs) in anthropogenic soils on brown coal mining dumpsites, a large number of samples and cumbersome, time-consuming laboratory measurements are required. Due to its rapidity, convenience and accuracy, reflectance spectroscopy within the Visible-Near Infrared (Vis-NIR) region has been used to predict soil constituents. This study evaluated the suitability of Vis-NIR (350-2500 nm) reflectance spectroscopy for predicting PTEs concentration, using samples collected on large brown coal mining dumpsites in the Czech Republic. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR) with cross-validation were used to relate PTEs data to the reflectance spectral data by applying different preprocessing strategies. According to the criteria of minimal Root Mean Square Error of Prediction of Cross Validation (RMSEPcv) and maximal coefficient of determination (R2cv) and Residual Prediction Deviation (RPD), the SVMR models with the first derivative pretreatment provided the most accurate prediction for As (R2cv) = 0.89, RMSEPcv = 1.89, RPD = 2.63). Less accurate, but acceptable prediction for screening purposes for Cd and Cu (0.66 ˂ R2cv) ˂ 0.81, RMSEPcv = 0.0.8 and 4.08 respectively, 2.0 ˂ RPD ˂ 2.5) were obtained. The PLSR model for predicting Mn (R2cv) = 0.44, RMSEPcv = 116.43, RPD = 1.45) presented an inadequate model. Overall, SVMR models for the Vis-NIR spectra could be used indirectly for an accurate assessment of PTEs' concentrations.
The enormous tourism boom raises concern about possible negative environmental impacts worldwide. One of the risks posed by tourism may be heavy metal pollution. On the example of the volcanic island of Santorini, a popular tourist destination, pollution of soils categorized according to the tourism load was monitored. Significant anthropogenic contamination by heavy metals, especially Cu, Cr and Pb, was found out. This contamination may constitute a moderate ecological risk to the island ecosystems. Tourism has been shown to be a significant pollution factor as evidenced by the contaminated soils near the airport. Simultaneously, airport traffic has been proved to be an important emitter of Co, Cr and especially Zn. The comparison with other volcanic islands has shown that on Santorini the content of heavy metals in soils is significantly lower, despite frequently higher tourism intensity. On this basis, it can be concluded that in case of volcanic islands the dominant factor determining the content of heavy metals in the soil is the parent rock. Given high and ever-increasing intensity of tourism on the island, it can be assumed that soil contamination will continue to rise rapidly. Therefore, without proper steps reducing tourism, increase in soil degradation, growing negative impacts on local ecosystems as well as on the quality of produced wine can be expected on Santorini.
- MeSH
- cestování * MeSH
- doprava * MeSH
- ekosystém MeSH
- hodnocení rizik MeSH
- látky znečišťující půdu analýza MeSH
- monitorování životního prostředí MeSH
- ostrovy MeSH
- půda MeSH
- těžké kovy analýza MeSH
- znečištění životního prostředí * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
- ostrovy MeSH
Inhibition of gap junctional intercellular communication (GJIC) is affiliated with tumor promotion process and it has been employed as an in vitro biomarker for evaluation of tumor promoting effects of chemicals. In the present study we investigated combined effects of anthropogenic environmental contaminants 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) and fluoranthene, cyanotoxins microcystin-LR and cylindrospermopsin, and extracts of laboratory cultures of cyanobacteria Aphanizomenon gracile and Cylindrospermopsis raciborskii, on GJIC in the rat liver epithelial cell line WB-F344. Binary mixtures of PCB 153 with fluoranthene and the mixtures of the two cyanobacterial strains elicited simple additive effects on GJIC after 30 min exposure, whereas microcystin-LR and cylindrospermopsin neither inhibited GJIC nor altered effects of PCB 153 or fluoranthene. However, synergistic effects were observed in the cells exposed to binary mixtures of anthropogenic contaminants (PCB 153 or fluoranthene) and cyanobacterial extracts. The synergistic effects were especially pronounced after prolonged (6-24h) co-exposure to fluoranthene and A. gracile extract, when mixture caused nearly complete GJIC inhibition, while none of the individual components caused any downregulation of GJIC at the same concentration and exposure time. The effects of cyanobacterial extracts were independent of microcystin-LR or cylindrospermopsin, which were not detected in cyanobacterial biomass. It provides further evidence on the presence of unknown tumor promoting metabolites in cyanobacteria. Clear potentiation of the GJIC inhibition observed in the mixtures of two anthropogenic contaminants and cyanobacteria highlight the importance of combined toxic effects of chemicals in complex environmental mixtures.
- MeSH
- Aphanizomenon metabolismus MeSH
- buněčné extrakty toxicita MeSH
- buněčné linie MeSH
- Cylindrospermopsis metabolismus MeSH
- epitelové buňky účinky léků metabolismus MeSH
- fluoreny toxicita MeSH
- karcinogeny toxicita MeSH
- krysa rodu rattus MeSH
- látky znečišťující životní prostředí toxicita MeSH
- mezerový spoj účinky léků metabolismus MeSH
- mezibuněčná komunikace účinky léků fyziologie MeSH
- mikrocystiny toxicita MeSH
- polychlorované bifenyly toxicita MeSH
- synergismus léků MeSH
- uracil analogy a deriváty toxicita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The concentration of the estrogens 17beta-estradiol, estriol, estrone, 17alpha-ethinylestradiol, mestranol and norethisterone and of the anthropogenic gadolinium (Gd(ant)) has been determined in the creeks and rivers, sewage treatment plants and water works of the city of Prague. The rapid degradation of estrogens in surface water allows the estrogen concentration gradient to be used as a very precise and sensitive guideline by which to pin-point sewage leaks into surface run-off water. The rather conservative behavior of Gd(ant) in surface and ground water documents in the present case the presence of sewage water in the surface water cycle.
- MeSH
- chemické látky znečišťující vodu analýza MeSH
- estrogeny analýza MeSH
- gadolinium analýza MeSH
- odpadní vody chemie MeSH
- senzitivita a specificita MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH