src-specific immunity in inbred chickens bearing v-src DNA- and RSV-induced tumors

. 1994 ; 40 (4) : 257-65.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid08082891

The growth pattern (progression/regression) of v-src DNA- and Rous sarcoma virus (RSV)-induced tumors was analogous on a panel of inbred chicken lines. The decisive role of the major histocompatibility complex [Mhc(B)] alleles in resistance to the progression of these tumors was formally proved in segregating backcross populations. The immune mechanism of tumor regression was demonstrated by both in vivo and in vitro assays. A protective effect of v-src-specific immunity against RSV challenge was shown in Rous sarcoma regressor, line CB (B12/B12). Immune cells from regressors of v-src DNA-induced tumors can protect syngeneic hosts from the development of tumor after challenge with both v-src DNA and RSV. Suppression of RSV-induced tumor cell growth in vitro was also achieved by the use of cocultivation with spleen cells from chickens in which v-src DNA-induced tumors had regressed. This in vitro sarcoma-specific response was Mhc(B)-restricted. Chickens of the congenic Rous sarcoma progressor line CC (B4/B4) are sometimes able to regress v-src DNA-induced tumors, but immune cells can only slow the growth of v-src DNA-induced tumors in syngeneic hosts. This suggests that the primary reason for the susceptibility of CC chickens is a weak v-src-specific immune response. Furthermore, some of the v-src DNA-induced tumors were transplantable across the Mhc(B) barrier. The growth of tumor allografts was able to be facilitated when immunological tolerance to the B-F/L region antigens (class I and class II) had been established. This demonstrated that a high tumorigenicity of the transplantable tumor was not due to the lack of Mhc(B) antigens on tumor cells.

Zobrazit více v PubMed

Cell. 1985 Aug;42(1):23-38 PubMed

Proc Natl Acad Sci U S A. 1983 Jan;80(2):353-7 PubMed

Proc Natl Acad Sci U S A. 1989 Dec;86(24):10123-7 PubMed

Folia Biol (Praha). 1989;35(4):177-96 PubMed

J Natl Cancer Inst. 1988 Aug 17;80(12):959-62 PubMed

Folia Biol (Praha). 1982;28(4):283-8 PubMed

Immunogenetics. 1982;15(5):441-7 PubMed

J Virol. 1991 Dec;65(12):7020-4 PubMed

Immunogenetics. 1992;35(5):309-15 PubMed

Folia Biol (Praha). 1984;30(3):177-88 PubMed

Virology. 1990 Mar;175(1):328-31 PubMed

J Virol. 1989 Jun;63(6):2461-8 PubMed

J Immunol. 1961 Feb;86:228-39 PubMed

Virology. 1991 Feb;180(2):857-60 PubMed

Proc Natl Acad Sci U S A. 1974 Sep;71(9):3565-9 PubMed

Folia Biol (Praha). 1984;30(6):412-25 PubMed

Crit Rev Immunol. 1992;12(1-2):47-79 PubMed

Folia Biol (Praha). 1988;34(3):170-81 PubMed

Immunogenetics. 1992;36(4):270-3 PubMed

Cancer Res. 1993 Feb 15;53(4):915-20 PubMed

Mol Cell Biol. 1987 Aug;7(8):2745-52 PubMed

Folia Biol (Praha). 1979;25(5):335-6 PubMed

Immunogenetics. 1989;29(2):127-30 PubMed

Folia Biol (Praha). 1986;32(5):334-48 PubMed

Nature. 1976 Mar 11;260(5547):170-3 PubMed

Immunogenetics. 1982;16(6):513-32 PubMed

Immunogenetics. 1981;12(3-4):275-84 PubMed

Virology. 1993 Nov;197(1):480-4 PubMed

Virology. 1992 Nov;191(1):477-9 PubMed

Virology. 1983 Jul 15;128(1):195-209 PubMed

Folia Biol (Praha). 1981;27(5):363-8 PubMed

Jpn J Cancer Res. 1988 Mar;79(3):365-74 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...