Rapid adaptive evolution of avian leukosis virus subgroup J in response to biotechnologically induced host resistance
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39146367
PubMed Central
PMC11349186
DOI
10.1371/journal.ppat.1012468
PII: PPATHOGENS-D-24-00566
Knihovny.cz E-zdroje
- MeSH
- CRISPR-Cas systémy MeSH
- editace genu MeSH
- fibroblasty virologie metabolismus MeSH
- kur domácí * virologie MeSH
- kuřecí embryo MeSH
- molekulární evoluce MeSH
- nemoci drůbeže virologie genetika MeSH
- odolnost vůči nemocem genetika MeSH
- proteiny virového obalu genetika metabolismus MeSH
- ptačí leukóza * virologie genetika MeSH
- virus ptačí leukózy * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny virového obalu MeSH
Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing. This resistance was confirmed both in vitro and in vivo. In vitro resistance of W38-/- chicken embryonic fibroblasts to all tested ALV-J strains was shown. To investigate the capacity of ALV-J for further adaptation, we used a retrovirus reporter-based assay to select adapted ALV-J variants. We assumed that adaptive mutations overcoming the cellular resistance would occur within the envelope protein. In accordance with this assumption, we isolated and sequenced numerous adapted virus variants and found within their envelope genes eight independent single nucleotide substitutions. To confirm the adaptive capacity of these substitutions, we introduced them into the original retrovirus reporter. All eight variants replicated effectively in W38-/- chicken embryonic fibroblasts in vitro while in vivo, W38-/- chickens were sensitive to tumor induction by two of the variants. Importantly, receptor alleles with more extensive modifications have remained resistant to the virus. These results demonstrate an important strategy in livestock genome engineering towards antivirus resistance and illustrate that cellular resistance induced by minor receptor modifications can be overcome by adapted virus variants. We conclude that more complex editing will be necessary to attain robust resistance.
Zobrazit více v PubMed
Gao F, Li P, Yin Y, Du X, Cao G, Wu S, et al.. Molecular breeding of livestock for disease resistance. Virology. 2023;587: 109862. doi: 10.1016/j.virol.2023.109862 PubMed DOI
Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, et al.. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 2016;34: 20–22. doi: 10.1038/nbt.3434 PubMed DOI
Koslová A, Trefil P, Mucksová J, Reinišová M, Plachý J, Kalina J, et al.. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc Natl Acad Sci U S A. 2020;117: 2108–2112. doi: 10.1073/pnas.1913827117 PubMed DOI PMC
Koslová A, Trefil P, Mucksová J, Krchlíková V, Plachý J, Krijt J, et al.. Knock-Out of Retrovirus Receptor Gene Tva in the Chicken Confers Resistance to Avian Leukosis Virus Subgroups A and K and Affects Cobalamin (Vitamin B12)-Dependent Level of Methylmalonic Acid. Viruses. 2021;13. doi: 10.3390/v13122504 PubMed DOI PMC
Sheppard CM, Goldhill DH, Swann OC, Staller E, Penn R, Platt OK, et al.. An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization. Nat Commun. 2023;14: 6135. doi: 10.1038/s41467-023-41308-4 PubMed DOI PMC
Idoko-Akoh A, Goldhill DH, Sheppard CM, Bialy D, Quantrill JL, Sukhova K, et al.. Creating resistance to avian influenza infection through genome editing of the ANP32 gene family. Nat Commun. 2023;14: 6136. doi: 10.1038/s41467-023-41476-3 PubMed DOI PMC
Dorner AJ, Stoye JP, Coffin JM. Molecular basis of host range variation in avian retroviruses. J Virol. 1985;53: 32–39. doi: 10.1128/JVI.53.1.32-39.1985 PubMed DOI PMC
Bova CA, Olsen JC, Swanstrom R. The avian retrovirus env gene family: molecular analysis of host range and antigenic variants. J Virol. 1988;62: 75–83. doi: 10.1128/JVI.62.1.75-83.1988 PubMed DOI PMC
Taplitz RA, Coffin JM. Selection of an avian retrovirus mutant with extended receptor usage. J Virol. 1997;71: 7814–7819. doi: 10.1128/JVI.71.10.7814-7819.1997 PubMed DOI PMC
Rainey GJA, Natonson A, Maxfield LF, Coffin JM. Mechanisms of avian retroviral host range extension. J Virol. 2003;77: 6709–6719. doi: 10.1128/jvi.77.12.6709-6719.2003 PubMed DOI PMC
Bates P, Young JA, Varmus HE. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993;74: 1043–1051. doi: 10.1016/0092-8674(93)90726-7 PubMed DOI
Young JA, Bates P, Varmus HE. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J Virol. 1993;67: 1811–1816. doi: 10.1128/JVI.67.4.1811-1816.1993 PubMed DOI PMC
Přikryl D, Plachý J, Kučerová D, Koslová A, Reinišová M, Šenigl F, et al.. The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A. J Virol. 2019;93. doi: 10.1128/JVI.00580-19 PubMed DOI PMC
Krchlíková V, Mikešová J, Geryk J, Bařinka C, Nexo E, Fedosov SN, et al.. The avian retroviral receptor Tva mediates the uptake of transcobalamin bound vitamin B12 (cobalamin). J Virol. 2021;95. doi: 10.1128/JVI.02136-20 PubMed DOI PMC
Smith EJ, Brojatsch J, Naughton J, Young JA. The CAR1 gene encoding a cellular receptor specific for subgroup B and D avian leukosis viruses maps to the chicken tvb locus. J Virol. 1998;72: 3501–3503. doi: 10.1128/JVI.72.4.3501-3503.1998 PubMed DOI PMC
Adkins HB, Brojatsch J, Young JA. Identification and characterization of a shared TNFR-related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required specifically for subgroup E viral entry. J Virol. 2000;74: 3572–3578. doi: 10.1128/jvi.74.8.3572-3578.2000 PubMed DOI PMC
Elleder D, Stepanets V, Melder DC, Senigl F, Geryk J, Pajer P, et al.. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J Virol. 2005;79: 10408–10419. doi: 10.1128/JVI.79.16.10408-10419.2005 PubMed DOI PMC
Chai N, Bates P. Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc Natl Acad Sci U S A. 2006;103: 5531–5536. doi: 10.1073/pnas.0509785103 PubMed DOI PMC
Klucking S, Adkins HB, Young JAT. Resistance to infection by subgroups B, D, and E avian sarcoma and leukosis viruses is explained by a premature stop codon within a resistance allele of the tvb receptor gene. J Virol. 2002;76: 7918–7921. doi: 10.1128/jvi.76.15.7918-7921.2002 PubMed DOI PMC
Elleder D, Melder DC, Trejbalova K, Svoboda J, Federspiel MJ. Two different molecular defects in the Tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses. J Virol. 2004;78: 13489–13500. doi: 10.1128/JVI.78.24.13489-13500.2004 PubMed DOI PMC
Reinisová M, Senigl F, Yin X, Plachy J, Geryk J, Elleder D, et al.. A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo. J Virol. 2008;82: 2097–2105. doi: 10.1128/JVI.02206-07 PubMed DOI PMC
Reinišová M, Plachý J, Trejbalová K, Šenigl F, Kučerová D, Geryk J, et al.. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J Virol. 2012;86: 2021–2030. doi: 10.1128/JVI.05771-11 PubMed DOI PMC
Koslová A, Kučerová D, Reinišová M, Geryk J, Trefil P, Hejnar J. Genetic Resistance to Avian Leukosis Viruses Induced by CRISPR/Cas9 Editing of Specific Receptor Genes in Chicken Cells. Viruses. 2018;10. doi: 10.3390/v10110605 PubMed DOI PMC
Kucerová D, Plachy J, Reinisová M, Senigl F, Trejbalová K, Geryk J, et al.. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J Virol. 2013;87: 8399–8407. doi: 10.1128/JVI.03180-12 PubMed DOI PMC
Payne LN, Nair V. The long view: 40 years of avian leukosis research. Avian Pathol. 2012;41: 11–19. doi: 10.1080/03079457.2011.646237 PubMed DOI
Li X, Lin W, Chang S, Zhao P, Zhang X, Liu Y, et al.. Isolation, identification and evolution analysis of a novel subgroup of avian leukosis virus isolated from a local Chinese yellow broiler in South China. Arch Virol. 2016;161: 2717–2725. doi: 10.1007/s00705-016-2965-x PubMed DOI
Sacco MA, Venugopal K. Segregation of EAV-HP ancient endogenous retroviruses within the chicken population. J Virol. 2001;75: 11935–11938. doi: 10.1128/JVI.75.23.11935-11938.2001 PubMed DOI PMC
Sacco MA, Howes K, Smith LP, Nair VK. Assessing the roles of endogenous retrovirus EAV-HP in avian leukosis virus subgroup J emergence and tolerance. J Virol. 2004;78: 10525–10535. doi: 10.1128/JVI.78.19.10525-10535.2004 PubMed DOI PMC
Bai J, Payne LN, Skinner MA. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol. 1995;69: 779–784. doi: 10.1128/JVI.69.2.779-784.1995 PubMed DOI PMC
Xu B, Dong W, Yu C, He Z, Lv Y, Sun Y, et al.. Occurrence of avian leukosis virus subgroup J in commercial layer flocks in China. Avian Pathol. 2004;33: 13–17. doi: 10.1080/03079450310001636237a PubMed DOI
Wang P, Lin L, Li H, Yang Y, Huang T, Wei P. Diversity and evolution analysis of glycoprotein GP85 from avian leukosis virus subgroup J isolates from chickens of different genetic backgrounds during 1989–2016: Coexistence of five extremely different clusters. Arch Virol. 2018;163: 377–389. doi: 10.1007/s00705-017-3601-0 PubMed DOI
Gao Y, Yun B, Qin L, Pan W, Qu Y, Liu Z, et al.. Molecular epidemiology of avian leukosis virus subgroup J in layer flocks in China. J Clin Microbiol. 2012;50: 953–960. doi: 10.1128/JCM.06179-11 PubMed DOI PMC
Yu M, Zhang Y, Zhang L, Wang S, Liu Y, Xu Z, et al.. N123I mutation in the ALV-J receptor-binding domain region enhances viral replication ability by increasing the binding affinity with chNHE1. PLoS Pathog. 2024;20: e1011928. doi: 10.1371/journal.ppat.1011928 PubMed DOI PMC
Plachý J, Reinišová M, Kučerová D, Šenigl F, Stepanets V, Hron T, et al.. Identification of New World Quails Susceptible to Infection with Avian Leukosis Virus Subgroup J. J Virol. 2017;91. doi: 10.1128/JVI.02002-16 PubMed DOI PMC
Reinišová M, Plachý J, Kučerová D, Šenigl F, Vinkler M, Hejnar J. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species. PLoS One. 2016;11: e0150589. doi: 10.1371/journal.pone.0150589 PubMed DOI PMC
Lee HJ, Lee KY, Jung KM, Park KJ, Lee KO, Suh J-Y, et al.. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J). Dev Comp Immunol. 2017;77: 340–349. doi: 10.1016/j.dci.2017.09.006 PubMed DOI
Xu M, Qian K, Shao H, Yao Y, Nair V, Ye J, et al.. Glycosylation of ALV-J Envelope Protein at Sites 17 and 193 Is Pivotal in the Virus Infection. J Virol. 2022;96: e0154921. doi: 10.1128/JVI.01549-21 PubMed DOI PMC
Munguia A, Federspiel MJ. Avian Sarcoma and Leukosis Virus Envelope Glycoproteins Evolve to Broaden Receptor Usage Under Pressure from Entry Competitors †. Viruses. 2019;11. doi: 10.3390/v11060519 PubMed DOI PMC
Holmen SL, Melder DC, Federspiel MJ. Identification of key residues in subgroup A avian leukosis virus envelope determining receptor binding affinity and infectivity of cells expressing chicken or quail Tva receptor. J Virol. 2001;75: 726–737. doi: 10.1128/JVI.75.2.726-737.2001 PubMed DOI PMC
Rainey GJA, Coffin JM. Evolution of broad host range in retroviruses leads to cell death mediated by highly cytopathic variants. J Virol. 2006;80: 562–570. doi: 10.1128/JVI.80.2.562-570.2006 PubMed DOI PMC
Lounková A, Kosla J, Přikryl D, Štafl K, Kučerová D, Svoboda J. Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry. Proc Natl Acad Sci U S A. 2017;114: E5148–E5157. doi: 10.1073/pnas.1704750114 PubMed DOI PMC
Amberg SM, Netter RC, Simmons G, Bates P. Expanded tropism and altered activation of a retroviral glycoprotein resistant to an entry inhibitor peptide. J Virol. 2006;80: 353–359. doi: 10.1128/JVI.80.1.353-359.2006 PubMed DOI PMC
Yin X, Melder DC, Payne WS, Dodgson JB, Federspiel MJ. Mutations in Both the Surface and Transmembrane Envelope Glycoproteins of the RAV-2 Subgroup B Avian Sarcoma and Leukosis Virus Are Required to Escape the Antiviral Effect of a Secreted Form of the TvbS3 Receptor †. Viruses. 2019;11. doi: 10.3390/v11060500 PubMed DOI PMC
Holmen SL, Federspiel MJ. Selection of a subgroup A avian leukosis virus [ALV(A)] envelope resistant to soluble ALV(A) surface glycoprotein. Virology. 2000;273: 364–373. doi: 10.1006/viro.2000.0424 PubMed DOI
Melder DC, Pankratz VS, Federspiel MJ. Evolutionary pressure of a receptor competitor selects different subgroup a avian leukosis virus escape variants with altered receptor interactions. J Virol. 2003;77: 10504–10514. doi: 10.1128/jvi.77.19.10504-10514.2003 PubMed DOI PMC
Davis HE, Morgan JR, Yarmush ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem. 2002;97: 159–172. doi: 10.1016/s0301-4622(02)00057-1 PubMed DOI
Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol. 2007;15: 211–218. doi: 10.1016/j.tim.2007.03.003 PubMed DOI PMC
Wolk T, Schreiber M. N-Glycans in the gp120 V1/V2 domain of the HIV-1 strain NL4-3 are indispensable for viral infectivity and resistance against antibody neutralization. Med Microbiol Immunol. 2006;195: 165–172. doi: 10.1007/s00430-006-0016-z PubMed DOI
Plachý J, Hála K, Hejnar J, Geryk J, Svoboda J. src-specific immunity in inbred chickens bearing v-src DNA- and RSV-induced tumors. Immunogenetics. 1994;40: 257–265. doi: 10.1007/BF00189970 PubMed DOI
Hart ML, Saifuddin M, Uemura K, Bremer EG, Hooker B, Kawasaki T, et al.. High mannose glycans and sialic acid on gp120 regulate binding of mannose-binding lectin (MBL) to HIV type 1. AIDS Res Hum Retroviruses. 2002;18: 1311–1317. doi: 10.1089/088922202320886352 PubMed DOI
Wallny H-J, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, et al.. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci U S A. 2006;103: 1434–1439. doi: 10.1073/pnas.0507386103 PubMed DOI PMC
Elleder D, Plachý J, Hejnar J, Geryk J, Svoboda J. Close linkage of genes encoding receptors for subgroups A and C of avian sarcoma/leucosis virus on chicken chromosome 28. Anim Genet. 2004;35: 176–181. doi: 10.1111/j.1365-2052.2004.01118.x PubMed DOI
Federspiel MJ, Hughes SH. Retroviral gene delivery. Methods Cell Biol. 1997;52: 179–214. PubMed
Hughes SH. The RCAS vector system. Folia Biol. 2004;50: 107–119. PubMed
Moscovici C, Moscovici MG, Jimenez H, Lai MM, Hayman MJ, Vogt PK. Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell. 1977;11: 95–103. doi: 10.1016/0092-8674(77)90320-8 PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596: 583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19: 679–682. doi: 10.1038/s41592-022-01488-1 PubMed DOI PMC
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al.. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30: 70–82. doi: 10.1002/pro.3943 PubMed DOI PMC
Kosakovsky Pond SL, Frost SDW. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22: 1208–1222. doi: 10.1093/molbev/msi105 PubMed DOI
Pond SLK, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21: 676–679. doi: 10.1093/bioinformatics/bti079 PubMed DOI