The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A

. 2019 Sep 01 ; 93 (17) : . [epub] 20190813

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31217247

Avian leukosis virus subgroup K (ALV-K) is composed of newly emerging isolates, which, in sequence analyses, cluster separately from the well-characterized subgroups A, B, C, D, E, and J. However, it remains unclear whether ALV-K represents an independent ALV subgroup with regard to receptor usage, host range, and superinfection interference. In the present study, we examined the host range of the Chinese infectious isolate JS11C1, an ALV-K prototype, and we found substantial overlap of species that were either resistant or susceptible to ALV-A and JS11C1. Ectopic expression of the chicken tva gene in mammalian cells conferred susceptibility to JS11C1, while genetic ablation of the tva gene rendered chicken DF-1 cells resistant to infection by JS11C1. Thus, tva expression is both sufficient and necessary for JS11C1 entry. Receptor sharing was also manifested in superinfection interference, with preinfection of cells with ALV-A, but not ALV-B or ALV-J, blocking subsequent JS11C1 infection. Finally, direct binding of JS11C1 and Tva was demonstrated by preincubation of the virus with soluble Tva, which substantially decreased viral infectivity in susceptible chicken cells. Collectively, these findings indicate that JS11C1 represents a new and bona fide ALV subgroup that utilizes Tva for cell entry and binds to a site other than that for ALV-A.IMPORTANCE ALV consists of several subgroups that are particularly characterized by their receptor usage, which subsequently dictates the host range and tropism of the virus. A few newly emerging and highly pathogenic Chinese ALV strains have recently been suggested to be an independent subgroup, ALV-K, based solely on their genomic sequences. Here, we performed a series of experiments with the ALV-K strain JS11C1, which showed its dependence on the Tva cell surface receptor. Due to the sharing of this receptor with ALV-A, both subgroups were able to interfere with superinfection. Because ALV-K could become an important pathogen and a significant threat to the poultry industry in Asia, the identification of a specific receptor could help in the breeding of resistant chicken lines with receptor variants with decreased susceptibility to the virus.

Zobrazit více v PubMed

Weiss RA. 1992. Cellular receptors and viral glycoproteins involved in retrovirus entry, p 1–108. In Levy JA. (ed), Retroviridae, vol 2 Plenum Press, New York, NY.

Barnard RJO, Elleder D, Young J. 2006. Avian sarcoma and leukosis virus-receptor interactions: from classical genetics to novel insights into virus-cell membrane vision. Virology 344:25–29. doi:10.1016/j.virol.2005.09.021. PubMed DOI

Bates P, Young JAT, Varmus HE. 1993. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74:1043–1051. doi:10.1016/0092-8674(93)90726-7. PubMed DOI

Young JAT, Bates P, Varmus HE. 1993. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J Virol 67:1811–1816. PubMed PMC

Elleder D, Stepanets V, Melder DC, Šenigl F, Geryk J, Pajer P, Plachý J, Hejnar J, Svoboda J, Federspiel MJ. 2005. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J Virol 79:10408–10419. doi:10.1128/JVI.79.16.10408-10419.2005. PubMed DOI PMC

Chai N, Bates P. 2006. Na/H exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc Natl Acad Sci U S A 103:5531–5536. doi:10.1073/pnas.0509785103. PubMed DOI PMC

Brojatsch J, Naughton J, Rolls MM, Zingler K, Young JA. 1996. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell 87:845–855. doi:10.1016/S0092-8674(00)81992-3. PubMed DOI

Adkins HB, Brojatsch J, Naughton J, Rolls MM, Pesola JM, Young J. 1997. Identification of a cellular receptor for subgroup E avian leukosis virus. Proc Natl Acad Sci U S A 94:11617–11622. doi:10.1073/pnas.94.21.11617. PubMed DOI PMC

Adkins HB, Brojatsch J, Young J. 2000. Identification and characterization of a shared TNFR-related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required specifically for subgroup E viral entry. J Virol 74:3572–3578. doi:10.1128/JVI.74.8.3572-3578.2000. PubMed DOI PMC

Adkins HB, Blacklow SC, Young J. 2001. Two functionally distinct forms of a retroviral receptor explain the nonreciprocal receptor interference among subgroups B, D, and E avian leukosis viruses. J Virol 75:3520–3526. doi:10.1128/JVI.75.8.3520-3526.2001. PubMed DOI PMC

Knauss DJ, Young JA. 2002. A fifteen-amino-acid TVB peptide serves as a minimal soluble receptor for subgroup B avian leukosis and sarcoma viruses. J Virol 76:5404–5410. doi:10.1128/jvi.76.11.5404-5410.2002. PubMed DOI PMC

Klucking S, Young JA. 2004. Amino acid residues Tyr-67, Asn-72, and Asp-73 of the TVB receptor are important for subgroup E avian sarcoma and leukosis virus interaction. Virology 318:371–380. doi:10.1016/j.virol.2003.09.024. PubMed DOI

Kozak CA. 2011. Naturally occurring polymorphisms of the mouse gammaretrovirus receptors CAT-1 and XPR1 alter virus tropism and pathogenicity. Adv Virol 2011:975801. doi:10.1155/2011/975801. PubMed DOI PMC

Watanabe S, Kawamura M, Odahara Y, Anai Y, Ochi H, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K. 2013. Phylogenetic and structural diversity in the feline leukemia virus env gene. PLoS One 8:e61009. doi:10.1371/journal.pone.0061009. PubMed DOI PMC

Klucking S, Adkins HB, Young J. 2002. Resistance to infection by subgroups B, D, and E avian sarcoma and leukosis viruses is explained by a premature stop codon within a resistance allele of the tvb receptor gene. J Virol 76:7918–7921. doi:10.1128/JVI.76.15.7918-7921.2002. PubMed DOI PMC

Elleder D, Melder DC, Trejbalova K, Svoboda J, Federspiel MJ. 2004. Two different molecular defects in the Tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses. J Virol 78:13489–13500. doi:10.1128/JVI.78.24.13489-13500.2004. PubMed DOI PMC

Kučerová D, Plachý J, Reinišová M, Šenigl F, Trejbalová K, Geryk J, Hejnar J. 2013. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J Virol 87:8399–8407. doi:10.1128/JVI.03180-12. PubMed DOI PMC

Plachý J, Reinišová M, Kučerová D, Šenigl F, Stepanets V, Hron T, Trejbalová K, Elleder D, Hejnar J. 2017. Identification of New World quails susceptible to infection with avian leukosis virus subgroup J. J Virol 91:e02002-16. doi:10.1128/JVI.02002-16. PubMed DOI PMC

Reinišová M, Šenigl F, Yin X, Plachý J, Geryk J, Elleder D, Svoboda J, Federspiel MJ, Hejnar J. 2008. A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo. J Virol 82:2097–2105. doi:10.1128/JVI.02206-07. PubMed DOI PMC

Reinišová M, Plachý J, Trejbalová K, Šenigl F, Kučerová D, Geryk J, Svoboda J, Hejnar J. 2012. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J Virol 86:2021–2030. doi:10.1128/JVI.05771-11. PubMed DOI PMC

Taplitz RA, Coffin JM. 1997. Selection of an avian retrovirus mutant with extended receptor usage. J Virol 71:7814–7819. PubMed PMC

Melder DC, Pankratz VS, Federspiel MJ. 2003. Evolutionary pressure of a receptor competitor selects different subgroup A avian leukosis virus escape variants with altered receptor interactions. J Virol 77:10504–10514. doi:10.1128/jvi.77.19.10504-10514.2003. PubMed DOI PMC

Rainey GJA, Natonson A, Maxfield LF, Coffin JM. 2003. Mechanisms of avian retroviral host range extension. J Virol 77:6709–6719. doi:10.1128/jvi.77.12.6709-6719.2003. PubMed DOI PMC

Lounková A, Kosla J, Přikryl D, Štafl K, Kučerová D, Svoboda J. 2017. Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry. Proc Natl Acad Sci U S A 114:E5148–E5157. doi:10.1073/pnas.1704750114. PubMed DOI PMC

Cui N, Su S, Chen Z, Zhao X, Cui Z. 2014. Genomic sequence analysis and biological characteristics of a rescued clone of avian leukosis virus strain JS11C1, isolated from indigenous chickens. J Gen Virol 95:2512–2522. doi:10.1099/vir.0.067264-0. PubMed DOI

Chang SW, Hsu MF, Wang CH. 2013. Gene detection, virus isolation, and sequence analysis of avian leukosis viruses in Taiwan country chickens. Avian Dis 57:172–177. doi:10.1637/10387-092612-Reg.1. PubMed DOI

Iwata N, Ochiai K, Hayashi K, Ohashi K, Umemura T. 2002. Avian retrovirus infection causes naturally occurring glioma: isolation and transmission of a virus from so-called fowl glioma. Avian Pathol 31:193–199. doi:10.1080/03079450120118702. PubMed DOI

Tomioka Y, Ochiai K, Ohashi K, Kimura T, Umemura T. 2003. In ovo infection with an avian leukosis virus causing fowl glioma: viral distribution and pathogenesis. Avian Pathol 32:617–624. doi:10.1080/03079450310001610640. PubMed DOI

Tomioka Y, Ochiai K, Ohashi K, Ono E, Toyoda T, Kimura T, Umemura T. 2004. Genome sequence analysis of the avian retrovirus causing so-called fowl glioma and the promoter activity of the long terminal repeat. J Gen Virol 85:647–652. doi:10.1099/vir.0.79778-0. PubMed DOI

Hatai H, Ochiai K, Nagakura K, Imanishi S, Ochi A, Kozakura R, Ono M, Goryo M, Ohashi K, Umemura T. 2008. A recombinant avian leukosis virus associated with fowl glioma in layer chickens in Japan. Avian Pathol 37:127–137. doi:10.1080/03079450801898815. PubMed DOI

Su Q, Li Y, Li W, Cui S, Tian S, Cui Z, Zhao P, Chang S. 2018. Molecular characteristics of avian leukosis viruses isolated from indigenous chicken breeds in China. Poult Sci 97:2917–2925. doi:10.3382/ps/pex367. PubMed DOI

Nehyba J, Svoboda J, Karakoz I, Geryk J, Hejnar J. 1990. Ducks: a new experimental host system for studying persistent infection with avian leukaemia retroviruses. J Gen Virol 71:1937–1945. doi:10.1099/0022-1317-71-9-1937. PubMed DOI

Koslová A, Kučerová D, Reinišová M, Geryk J, Trefil P, Hejnar J. 2018. Genetic resistance to avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses 10:605. doi:10.3390/v10110605. PubMed DOI PMC

Holmen SL, Salter DW, Payne WS, Dodgson JB, Hughes SH, Federspiel MJ. 1999. Soluble forms of the subgroup A avian leukosis virus [ALV(A)] receptor Tva significantly inhibit ALV(A) infection in vitro and in vivo. J Virol 73:10051–10060. PubMed PMC

Holmen SL, Melder DC, Federspiel MJ. 2001. Identification of key residues in subgroup A avian leukosis virus envelope determining receptor binding affinity and infectivity of cells expressing chicken or quail Tva receptor. J Virol 75:726–737. doi:10.1128/JVI.75.2.726-737.2001. PubMed DOI PMC

Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL, Kabat D. 2002. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol 76:6442–6452. doi:10.1128/jvi.76.13.6442-6452.2002. PubMed DOI PMC

Yoshikawa R, Yasuda J, Kobayashi T, Miyazawa T. 2012. Canine ASCT1 and ASCT2 are functional receptors for RD-114 virus in dogs. J Gen Virol 93:603–607. doi:10.1099/vir.0.036228-0. PubMed DOI

Malicorne S, Vernochet C, Cornelis G, Mulot B, Delsuc F, Heidmann O, Heidmann T, Dupressoir A. 2016. Genome-wide screening of retroviral envelope genes in the nine-banded armadillo (Dasypus novemcinctus, Xenarthra) reveals an unfixed chimeric endogenous betaretrovirus using the ASCT2 receptor. J Virol 90:8132–8149. doi:10.1128/JVI.00483-16. PubMed DOI PMC

Sommerfelt MA, Weiss RA. 1990. Receptor interference groups of 20 retroviruses plating on human cells. Virology 176:58–69. doi:10.1016/0042-6822(90)90230-O. PubMed DOI

Li X, Lin W, Chang S, Zhao P, Zhang X, Liu Y, Chen W, Li B, Shu D, Zhang H, Chen F, Xie Q. 2016. Isolation, identification and evolution analysis of a novel subgroup of avian leukosis virus isolated from a local Chinese yellow broiler in South China. Arch Virol 161:2717–2725. doi:10.1007/s00705-016-2965-x. PubMed DOI

Mingzhang R, Zijun Z, Lixia Y, Jian C, Min F, Jie Z, Ming L, Weisheng C. 2018. The construction and application of a cell line resistant to novel subgroup avian leukosis virus (ALV-K) infection. Arch Virol 163:89–98. doi:10.1007/s00705-017-3563-2. PubMed DOI PMC

Rong L, Edinger A, Bates P. 1997. Role of basic residues in the subgroup-determining region of the subgroup A avian sarcoma and leukosis virus envelope in receptor binding and infection. J Virol 71:3458–3465. PubMed PMC

Dong X, Zhao P, Xu B, Fan J, Meng F, Sun P, Ju S, Li Y, Chang S, Shi W, Cui Z. 2015. Avian leukosis virus in indigenous chicken breeds, China. Emerg Microbes Infect 4:e76. doi:10.1038/emi.2015.76. PubMed DOI PMC

Elleder D, Plachý J, Hejnar J, Geryk J, Svoboda J. 2004. Close linkage of genes encoding receptors for subgroups A and C of avian sarcoma/leucosis virus on chicken chromosome 28. Anim Genet 35:176–181. doi:10.1111/j.1365-2052.2004.01118.x. PubMed DOI

Reinišová M, Plachý J, Kučerová D, Šenigl F, Vinkler M, Hejnar J. 2016. Genetic diversity of NHE1, receptor for subgroup J avian leukosis virus, in domestic chicken and wild anseriform species. PLoS One 11:e0150589. doi:10.1371/journal.pone.0150589. PubMed DOI PMC

Federspiel MJ, Hughes SH. 1997. Retroviral gene delivery. Methods Cell Biol 52:179–214. doi:10.1016/S0091-679X(08)60379-9. PubMed DOI

Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK. 1998. The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248:295–304. doi:10.1006/viro.1998.9290. PubMed DOI

Moscovici C, Moscovici MG, Jimenez H, Lai MM, Hayman MJ, Vogt PK. 1977. Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11:95–103. doi:10.1016/0092-8674(77)90320-8. PubMed DOI

Hughes SH. 2004. The RCAS vector system. Folia Biol (Praha) 50:107–119. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...