Knock-Out of Retrovirus Receptor Gene Tva in the Chicken Confers Resistance to Avian Leukosis Virus Subgroups A and K and Affects Cobalamin (Vitamin B12)-Dependent Level of Methylmalonic Acid

. 2021 Dec 14 ; 13 (12) : . [epub] 20211214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34960774

The chicken Tva cell surface protein, a member of the low-density lipoprotein receptor family, has been identified as an entry receptor for avian leukosis virus of classic subgroup A and newly emerging subgroup K. Because both viruses represent an important concern for the poultry industry, we introduced a frame-shifting deletion into the chicken tva locus with the aim of knocking-out Tva expression and creating a virus-resistant chicken line. The tva knock-out was prepared by CRISPR/Cas9 gene editing in chicken primordial germ cells and orthotopic transplantation of edited cells into the testes of sterilized recipient roosters. The resulting tva -/- chickens tested fully resistant to avian leukosis virus subgroups A and K, both in in vitro and in vivo assays, in contrast to their susceptible tva +/+ and tva +/- siblings. We also found a specific disorder of the cobalamin/vitamin B12 metabolism in the tva knock-out chickens, which is in accordance with the recently recognized physiological function of Tva as a receptor for cobalamin in complex with transcobalamin transporter. Last but not least, we bring a new example of the de novo resistance created by CRISPR/Cas9 editing of pathogen dependence genes in farm animals and, furthermore, a new example of gene editing in chicken.

Zobrazit více v PubMed

Federspiel M.J. Reverse engineering provides insight on the evolution of subgroups A to E avian sarcoma and leukosis virus receptor specificity. Viruses. 2019;11:497. doi: 10.3390/v11060497. PubMed DOI PMC

Bates P., Young J.A., Varmus H.E. A receptor for subgroup a Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993;74:1043–1051. doi: 10.1016/0092-8674(93)90726-7. PubMed DOI

Young J.A.T., Bates P., Varmus H.E. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J. Virol. 1993;67:1811–1816. doi: 10.1128/jvi.67.4.1811-1816.1993. PubMed DOI PMC

Brojatsch J., Naughton J., Rolls M.M., Zingler K., Young J.A. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell. 1996;87:845–855. doi: 10.1016/S0092-8674(00)81992-3. PubMed DOI

Adkins H.B., Brojatsch J., Naughton J., Rolls M.M., Pesola J.M., Young J.A. Identification of a cellular receptor for subgroup E avian leukosis virus. Proc. Natl. Acad. Sci. USA. 1997;94:11617–11622. doi: 10.1073/pnas.94.21.11617. PubMed DOI PMC

Adkins H.B., Brojatsch J., Young J.A.T. Identification and characterization of a shared TNFR-related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required specifically for subgroup E viral entry. J. Virol. 2000;74:3572–3578. doi: 10.1128/JVI.74.8.3572-3578.2000. PubMed DOI PMC

Elleder D., Stepanets V., Melder D.C., Šenigl F., Geryk J., Pajer P., Plachý J., Hejnar J., Svoboda J., Federspiel M.J. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J. Virol. 2005;79:10408–10419. doi: 10.1128/JVI.79.16.10408-10419.2005. PubMed DOI PMC

Chai N., Bates P. Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc. Natl. Acad. Sci. USA. 2006;103:5531–5536. doi: 10.1073/pnas.0509785103. PubMed DOI PMC

Elleder D., Melder D.C., Trejbalova K., Svoboda J., Federspiel M.J. Two different molecular defects in the Tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses. J. Virol. 2004;78:13489–13500. doi: 10.1128/JVI.78.24.13489-13500.2004. PubMed DOI PMC

Klucking S., Adkins H.B., Young J.A.T. Resistance to infection by subgroups B, D, and E avian sarcoma and leukosis viruses is explained by a premature stop codon within a resistance allele of the tvb receptor gene. J. Virol. 2002;76:7918–7921. doi: 10.1128/JVI.76.15.7918-7921.2002. PubMed DOI PMC

Reinišová M., Šenigl F., Yin X., Plachý J., Geryk J., Elleder D., Svoboda J., Federspiel M.J., Hejnar J. A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo. J. Virol. 2008;82:2097–2105. doi: 10.1128/JVI.02206-07. PubMed DOI PMC

Přikryl D., Plachý J., Kučerová D., Koslová A., Reinišová M., Šenigl F., Hejnar J. The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A. J. Virol. 2019;93:e00580-19. doi: 10.1128/JVI.00580-19. PubMed DOI PMC

Rong L., Bates P. Analysis of the subgroup a avian sarcoma and leukosis virus receptor: The 40-residue, cysteine-rich, low-density lipoprotein receptor repeat motif of tva is sufficient to mediate viral entry. J. Virol. 1995;69:4847–4853. doi: 10.1128/jvi.69.8.4847-4853.1995. PubMed DOI PMC

Zingler K., Belanger C., Peters R., Agard D., Young J.A.T. Identification and characterization of the viral interaction determinant of the subgroup a avian leukosis virus receptor. J. Virol. 1995;69:4261–4266. doi: 10.1128/jvi.69.7.4261-4266.1995. PubMed DOI PMC

Rong L., Gendron K., Bates P. Conversion of a human low-density lipoprotein receptor ligand-binding repeat to a virus receptor: Identification of residues important for ligand specificity. Proc. Natl. Acad. Sci. USA. 1998;95:8467–8472. doi: 10.1073/pnas.95.15.8467. PubMed DOI PMC

Reinišová M., Plachý J., Trejbalová K., Šenigl F., Kučerová D., Geryk J., Svoboda J., Hejnar J. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J. Virol. 2012;86:2021–2030. doi: 10.1128/JVI.05771-11. PubMed DOI PMC

Chen W.G., Liu Y., Li H.X., Chang S., Shu D.M., Zhang H.M., Chen F., Xie Q. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A. Sci. Rep. 2015;5:9900. doi: 10.1038/srep09900. PubMed DOI PMC

Koslová A., Kučerová D., Reinišová M., Geryk J., Trefil P., Hejnar J. Genetic Resistance to Avian Leukosis Viruses Induced by CRISPR/Cas9 Editing of Specific Receptor Genes in Chicken Cells. Viruses. 2018;10:605. doi: 10.3390/v10110605. PubMed DOI PMC

Lee H.J., Park K.J., Lee K.Y., Yao Y.X., Nair V., Han J.Y. Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A, B, and J. J. Anim. Sci. Biotechnol. 2019;10:23. doi: 10.1186/s40104-019-0333-x. PubMed DOI PMC

Quadros E.V., Nakayama Y., Sequeira J.M. The Protein and the Gene Encoding the Receptor for the Cellular Uptake of Transcobalamin-Bound Cobalamin. Blood. 2009;113:186–192. doi: 10.1182/blood-2008-05-158949. PubMed DOI PMC

Krchlíková V., Mikešová J., Geryk J., Bařinka C., Nexo E., Fedosov S.N., Kosla J., Kučerová D., Reinišová M., Hejnar J., et al. The avian retroviral receptor Tva mediates the uptake of transcobalamin 1 bound vitamin B12 (cobalamin) J. Virol. 2021;95:e02136-20. doi: 10.1128/JVI.02136-20. PubMed DOI PMC

Green R., Allen L.H., Bjørke-Monsen A.-L., Brito A., Guéant J.-L., Miller J.W., Molloy A.M., Nexo E., Stabler S., Toh B.H., et al. Vitamin B12 Deficiency. Nat. Rev. Dis. Primers. 2017;3:17040. doi: 10.1038/nrdp.2017.40. PubMed DOI

Lai S.C., Nakayama Y., Sequeira J.M., Wlodarczyk B.J., Cabrera R.M., Finnell R.H., Bottiglieri T., Quadros E.V. The Transcobalamin Receptor Knockout Mouse: A Model for Vitamin B12 Deficiency in the Central Nervous System. FASEB J. 2013;27:2468–2475. doi: 10.1096/fj.12-219055. PubMed DOI PMC

Arora K., Sequeira J.M., Alarcon J.M., Wasek B., Arning E., Bottiglieri T., Quadros E.V. Neuropathology of Vitamin B Deficiency in the Cd320 Mouse. FASEB J. 2019;33:2563–2573. doi: 10.1096/fj.201800754RR. PubMed DOI PMC

Trefil P., Mičáková A., Mucksová J., Hejnar J., Poplštein M., Bakst M.R., Kalina J., Brillard J.P. Restoration of spermatogenesis and male fertility by transplantation of dispersed testicular cells in the chicken. Biol. Reprod. 2006;75:575–581. doi: 10.1095/biolreprod.105.050278. PubMed DOI

Trefil P., Aumann D., Koslová A., Mucksová J., Benešová B., Kalina J., Wurmser C., Fries R., Elleder D., Schusser B., et al. Male fertility restored by transplanting primordial germ cells into testes: A new way towards efficient transgenesis in chicken. Sci. Rep. 2017;7:14246. doi: 10.1038/s41598-017-14475-w. PubMed DOI PMC

Plachý J. The chicken–A laboratory animal of the class Aves. Folia Biol. 2000;46:17–23. PubMed

Mucksová J., Reinišová M., Kalina J., Lejčková B., Hejnar J., Trefil P. Conservation of chicken male germline by orthotopic transplantation of primordial germ cells from genetically distant donors. Biol. Reprod. 2019;101:200–207. doi: 10.1093/biolre/ioz064. PubMed DOI

Whyte J., Glover J.D., Woodcock M., Brzeszczynska J., Taylor L., Sherman A., Kaiser P., McGrew M.J. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Rep. 2015;5:1171–1182. doi: 10.1016/j.stemcr.2015.10.008. PubMed DOI PMC

Koslová A., Trefil P., Mucksová J., Reinišová M., Plachý J., Kalina J., Kučerová D., Geryk J., Krchlíková V., Lejčková B., et al. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc. Natl. Acad. Sci. USA. 2020;117:2108–2112. doi: 10.1073/pnas.1913827117. PubMed DOI PMC

Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC

Federspiel M.J., Hughes S.H. Retroviral gene delivery. Methods Cell Biol. 1997;52:179–214. PubMed

Moscovici C., Moscovici M.G., Jimenez H., Lai M.M., Hayman M.J., Vogt P.K. Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell. 1977;11:95–103. doi: 10.1016/0092-8674(77)90320-8. PubMed DOI

Kheimar A., Klinger R., Bertzbach L.D., Sid H., Yu Y., Conradie A.M., Schade B., Böhm B., Preisinger R., Nair V., et al. A Genetically Engineered Commercial Chicken Line Is Resistant to Highly Pathogenic Avian Leukosis Virus Subgroup J. Microorganisms. 2021;9:1066. doi: 10.3390/microorganisms9051066. PubMed DOI PMC

Whitworth K.M., Rowland R.R., Ewen C.L., Trible B.R., Kerrigan M.A., Cino-Ozuna A.G., Samuel M.S., Lightner J.E., McLaren D.G., Mileham A.J., et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 2016;34:20–22. doi: 10.1038/nbt.3434. PubMed DOI

Xu K., Zhou Y., Mu Y., Liu Z., Hou S., Xiong Y., Fang L., Ge C., Wei Y., Zhang X., et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. Elife. 2020;9:e57132. doi: 10.7554/eLife.57132. PubMed DOI PMC

van de Lavoir M.C., Diamond J.H., Leighton P.A., Mather-Love C., Heyer B.S., Bradshaw R., Kerchner A., Hooi L.T., Gessaro T.M., Swanberg S.E., et al. Germline transmission of genetically modified primordial germ cells. Nature. 2006;441:766–769. doi: 10.1038/nature04831. PubMed DOI

Schusser B., Collarini E.J., Yi H., Izquierdo S.M., Fesler J., Pedersen D., Klasing K.C., Kaspers B., Harriman W.D., van de Lavoir M.C., et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc. Natl. Acad. Sci. USA. 2013;110:20170–20175. doi: 10.1073/pnas.1317106110. PubMed DOI PMC

Kim G.D., Lee J.H., Song S., Kim S.W., Han J.S., Shin S.P., Park B.C., Park T.S. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB J. 2020;34:5688–5696. doi: 10.1096/fj.201903035R. PubMed DOI

Lee J., Ma J., Lee K. Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail. Proc. Natl. Acad. Sci. USA. 2019;116:13288–13292. doi: 10.1073/pnas.1903230116. PubMed DOI PMC

Rieblinger B., Sid H., Duda D., Bozoglu T., Klinger R., Schlickenrieder A., Lengyel K., Flisikowski K., Flisikowska T., Simm N., et al. Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proc. Natl. Acad. Sci. USA. 2021;118:e2022562118. doi: 10.1073/pnas.2022562118. PubMed DOI PMC

Ballantyne M., Woodcock M., Doddamani D., Hu T., Taylor L., Hawken R.J., McGrew M.J. Direct allele introgression into pure chicken breeds using Sire Dam Surrogate (SDS) mating. Nat. Commun. 2021;12:659. doi: 10.1038/s41467-020-20812-x. PubMed DOI PMC

Lopes-Marques M., Ruivo R., Delgado I., Wilson J.M., Aluru N., Castro L.F.C. Basal gnathostomes provide unique insights into the evolution of vitamin B12 binders. Genome Biol. 2015;7:457–464. doi: 10.1093/gbe/evu289. PubMed DOI PMC

Greibe E., Fedosov S., Nexo E. The cobalamin-binding protein in zebrafish is an intermediate between the three cobalamin-binding proteins in human. PLoS ONE. 2012;7:35660. doi: 10.1371/journal.pone.0035660. PubMed DOI PMC

Selhub J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J. Nutr. Health Aging. 2002;6:39–42. PubMed

Fernàndez-Roig S., Lai S.-C., Murphy M.M., Fernandez-Ballart J., Quadros E.V. Vitamin B12 deficiency in the brain leads to DNA hypomethylation in the TCblR/CD320 knockout mouse. Nutr. Metab. 2012;9:41. doi: 10.1186/1743-7075-9-41. PubMed DOI PMC

Shen S., Li J., Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell Biol. 2005;169:577–589. doi: 10.1083/jcb.200412101. PubMed DOI PMC

Arora K., Sequeira J.M., Hernández A.I., Alarcon J.M., Quadros E.V. Behavioral alterations are associated with vitamin B12 deficiency in the transcobalamin receptor/CD320 KO mouse. PLoS ONE. 2017;12:e0177156. doi: 10.1371/journal.pone.0177156. PubMed DOI PMC

Quadros E.V., Lai S.C., Nakayama Y., Sequeira J.M., Hannibal L., Wang S., Jacobsen D.W., Fedosov S., Wright E., Gallagher R.C., et al. Positive newborn screen for methylmalonic aciduria identifies the first mutation in TCblR/CD320, the gene for cellular uptake of transcobalamin-bound vitamin B(12) Hum. Mutat. 2010;31:924–929. doi: 10.1002/humu.21297. PubMed DOI PMC

Hannah-Shmouni F., Cruz V., Schulze A., Mercimek-Andrews S. Transcobalamin receptor defect: Identification of two new cases through positive newborn screening for propionic/methylmalonic aciduria and long-term outcome. Am. J. Med. Genet. A. 2018;176:1411–1415. doi: 10.1002/ajmg.a.38696. PubMed DOI

Reinišová M., Plachý J., Kučerová D., Šenigl F., Vinkler M., Hejnar J. Genetic diversity of NHE1, receptor for subgroup J avian leukosis virus, in domestic chicken and wild anseriform species. PLoS ONE. 2016;11:e0150589. doi: 10.1371/journal.pone.0150589. PubMed DOI PMC

Kučerová D., Plachý J., Reinišová M., Šenigl F., Trejbalová K., Geryk J., Hejnar J. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J. Virol. 2013;87:8399–8407. doi: 10.1128/JVI.03180-12. PubMed DOI PMC

Plachý J., Reinišová M., Kučerová D., Šenigl F., Stepanets V., Hron T., Trejbalová K., Elleder D., Hejnar J. Identification of New World quails susceptible to infection with avian leukosis virus subgroup J. J. Virol. 2017;91:e02002-16.s. doi: 10.1128/JVI.02002-16. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...