Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31964810
PubMed Central
PMC6995012
DOI
10.1073/pnas.1913827117
PII: 1913827117
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas9 genome editing in chicken, Na+/H+ exchanger type 1, avian leukosis virus subgroup J, disease resilience in poultry, primordial germ cells,
- MeSH
- CRISPR-Cas systémy MeSH
- editace genu MeSH
- geneticky modifikovaná zvířata genetika imunologie virologie MeSH
- kur domácí MeSH
- nemoci drůbeže genetika imunologie virologie MeSH
- odolnost vůči nemocem MeSH
- ptačí leukóza genetika imunologie virologie MeSH
- ptačí proteiny genetika imunologie MeSH
- sodíko-vodíkový výměnný transportér 1 genetika imunologie MeSH
- virus ptačí leukózy klasifikace genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ptačí proteiny MeSH
- sodíko-vodíkový výměnný transportér 1 MeSH
Avian leukosis virus subgroup J (ALV-J) is an important concern for the poultry industry. Replication of ALV-J depends on a functional cellular receptor, the chicken Na+/H+ exchanger type 1 (chNHE1). Tryptophan residue number 38 of chNHE1 (W38) in the extracellular portion of this molecule is a critical amino acid for virus entry. We describe a CRISPR/Cas9-mediated deletion of W38 in chicken primordial germ cells and the successful production of the gene-edited birds. The resistance to ALV-J was examined both in vitro and in vivo, and the ΔW38 homozygous chickens tested ALV-J-resistant, in contrast to ΔW38 heterozygotes and wild-type birds, which were ALV-J-susceptible. Deletion of W38 did not manifest any visible side effect. Our data clearly demonstrate the antiviral resistance conferred by precise CRISPR/Cas9 gene editing in the chicken. Furthermore, our highly efficient CRISPR/Cas9 gene editing in primordial germ cells represents a substantial addition to genotechnology in the chicken, an important food source and research model.
BIOPHARM Research Institute of Biopharmacy and Veterinary Drugs 254 49 Jílové u Prahy Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences 14220 Prague Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences 14220 Prague Czech Republic;
Zobrazit více v PubMed
Payne L. N., et al. , A novel subgroup of exogenous avian leukosis virus in chickens. J. Gen. Virol. 72, 801–807 (1991). PubMed
Payne L. N., Nair V., The long view: 40 years of avian leukosis research. Avian Pathol. 41, 11–19 (2012). PubMed
Zhou D., et al. , Outbreak of myelocytomatosis caused by mutational avian leukosis virus subgroup J in China, 2018. Transbound. Emerg. Dis. 66, 622–626 (2019). PubMed
Chai N., Bates P., Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc. Natl. Acad. Sci. U.S.A. 103, 5531–5536 (2006). PubMed PMC
Kučerová D., et al. , Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J. Virol. 87, 8399–8407 (2013). PubMed PMC
Lee H. J., et al. , Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J). Dev. Comp. Immunol. 77, 340–349 (2017). PubMed
Reinišová M., et al. , Genetic diversity of NHE1, receptor for subgroup J avian leukosis virus, in domestic chicken and wild anseriform species. PLoS One 11, e0150589 (2016). PubMed PMC
van de Lavoir M. C., et al. , Germline transmission of genetically modified primordial germ cells. Nature 441, 766–769 (2006). PubMed
Collarini E. J., Leighton P. A., Van de Lavoir M. C., Production of transgenic chickens using cultured primordial germ cells and gonocytes. Methods Mol. Biol. 1874, 403–430 (2019). PubMed
Schusser B., et al. , Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc. Natl. Acad. Sci. U.S.A. 110, 20170–20175 (2013). PubMed PMC
Trefil P., et al. , Male fertility restored by transplanting primordial germ cells into testes: A new way towards efficient transgenesis in chicken. Sci. Rep. 7, 14246 (2017). PubMed PMC
Koslová A., et al. , Genetic resistance to avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses 10, 605 (2018). PubMed PMC
Reinišová M., et al. , Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J. Virol. 86, 2021–2030 (2012). PubMed PMC
Plachý J., et al. , Identification of New World quails susceptible to infection with avian leukosis virus subgroup J. J. Virol. 91, 02002–02016 (2017). PubMed PMC
Guan X., et al. , Residues 28 to 39 of the extracellular loop 1 of chicken Na+/H+ exchanger type I mediate cell binding and entry of subgroup J avian leukosis virus. J. Virol. 92, e01627-17 (2017). PubMed PMC
Whitworth K. M., et al. , Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 34, 20–22 (2016). PubMed
Dimitrov L., et al. , Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells. PLoS One 11, e0154303 (2016). PubMed PMC
Oishi I., Yoshii K., Miyahara D., Kagami H., Tagami T., Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci. Rep. 6, 23980 (2016). PubMed PMC
Lee H. J., et al. , Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J. 33, 8519–8529 (2019). PubMed
Plachý J., The chicken–A laboratory animal of the class Aves. Folia Biol. (Praha) 46, 17–23 (2000). PubMed
Mucksová J., et al. , Conservation of chicken male germline by orthotopic transplantation of primordial germ cells from genetically distant donors. Biol. Reprod. 101, 200–207 (2019). PubMed
Whyte J., et al. , FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Reports 5, 1171–1182 (2015). PubMed PMC
Ran F. A., et al. , Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). PubMed PMC
Hsu P. D., et al. , DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013). PubMed PMC
Haeussler M., et al. , Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016). PubMed PMC
Himly M., Foster D. N., Bottoli I., Iacovoni J. S., Vogt P. K., The DF-1 chicken fibroblast cell line: Transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248, 295–304 (1998). PubMed
Moscovici C., et al. , Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11, 95–103 (1977). PubMed
Federspiel M. J., Hughes S. H., Retroviral gene delivery. Methods Cell Biol. 52, 179–214 (1997). PubMed
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?