We describe cases of collyriclosis in apodiform and passeriform birds in Portugal, Switzerland, and Germany. We extend the host range of Collyriculm faba to include apodiform birds ( Apus apus , Apus melba , and Apus pallidus ) and the passerine Sitta europaea (Eurasian Nuthatch). Infections varied in severity from an incidental finding to severe debilitation and death. The infection route remains unclear with the apparent absence from Germany, Portugal, and Switzerland of the first intermediate host of C. faba, the aquatic gastropod Bythinella austriaca, implying that other organisms might be involved in the parasite's life cycle. Furthermore, the detection of C. faba cysts in very young passerine birds may indicate an infection during the nestling stage and a rapid development of parasite-containing subcutaneous cysts. This series of cases highlights an increased geographic range into Portugal and the potential debilitating nature of a parasite of migratory birds in Europe. However, given the rarity of cases, collyriclosis does not seem to present an important threat to migratory species preservation.
- MeSH
- Host Specificity * MeSH
- Trematode Infections veterinary MeSH
- Bird Diseases * MeSH
- Birds MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- Germany MeSH
- Portugal MeSH
- Switzerland MeSH
The evolutionary distinctiveness (ED) score is a measure of phylogenetic isolation that quantifies the evolutionary uniqueness of a species. Here, we compared the ED score of parasitic and non-parasitic cuckoo species world-wide, to understand whether parental care or parasitism represents the largest amount of phylogenetic uniqueness. Next, we focused only on 46 cuckoo species characterized by brood parasitism with a known number of host species, and we explored the associations among ED score, number of host species and breeding range size for these species. We assessed these associations using phylogenetic generalized least squares (PGLS) models, taking into account the phylogenetic signal. Parasitic cuckoo species were not more unique in terms of ED than non-parasitic species. However, we found a significant negative association between the evolutionary uniqueness and host range and a positive correlation between the number of host species and range size of parasitic cuckoos, probably suggesting a passive sampling of hosts by parasitic species as the breeding range broadens. The findings of this study showed that more generalist brood parasites occupied very different positions in a phylogenetic tree, suggesting that they have evolved independently within the Cuculiformes order. Finally, we demonstrated that specialist cuckoo species also represent the most evolutionarily unique species in the order of Cuculiformes.
Successful co-introduction of a parasite and its host relies not only on presence of the parasite on host individuals in the founder population but also on the ability of both host and parasite to persist in the new area. Gyrodactylus proterorhini (Monogenea) has been successfully co-introduced with its Ponto-Caspian goby hosts (Babka gymnotrachelus, Neogobius fluviatilis, Neogobius melanostomus, Ponticola kessleri, Proterorhinus semilunaris) to many freshwater systems in Europe and is now widely distributed over four large European river basins (Danube, Rhine, Scheldt and Vistula). Within Europe, higher infection levels are documented in sites further from the native host range. In North America, however, G. proterorhini appears to be absent. Host specificity of G. proterorhini tested under natural conditions showed accidental host-switching onto local fish species (native Perca fluviatilis and non-native Perccottus glenii) in the river Vistula. Further examination of host-switching under experimental conditions, however, showed that G. proterorhini were unable to survive on non-gobiid hosts longer than 24 h. Our results indicate extremely low potential for host-switching of introduced G. proterorhini to non-gobiid hosts, at least in the freshwater systems of Central and Western Europe.
- MeSH
- Host Specificity physiology MeSH
- Trematode Infections epidemiology parasitology veterinary MeSH
- Perciformes parasitology MeSH
- Rivers parasitology MeSH
- Trematoda isolation & purification MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe epidemiology MeSH
- North America epidemiology MeSH
Living and freeze-killed natural and laboratory hosts, with different susceptibility to entomopathogenic nematodes, were exposed to the larvae of Steinernema affine and Steinernema kraussei in two different experimental arenas (Eppendorf tubes, Petri dishes), and the success of the colonisation and eventual progeny production were observed. Both nematodes were able to colonise both living and dead larvae of Galleria mellonella (Lepidoptera) and adult Blatella germanica (Blattodea) even though the progeny production in dead hosts was lower on average. Living carabid beetles, Poecilus cupreus, and elaterid larvae (Coleoptera) were resistant to the infection, however, both nematodes were able to colonise and multiply in several dead P. cupreus and in a majority of dead elaterid larvae. By scavenging, EPNs can utilise cadavers of insects that are naturally resistant to EPN infection, and so broaden their host range.
- MeSH
- Nematoda pathogenicity MeSH
- Host-Parasite Interactions physiology MeSH
- Lepidoptera parasitology MeSH
- Nematode Infections parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The hepatitis C virus (HCV)-related bovine hepacivirus (BovHepV) can cause acute as well as persistent infections in cattle. The true clinical relevance of the virus is not yet known. As reliable antibody detection methods are lacking and prevalence studies have only been conducted in cattle and few countries to date, the true distribution, genetic diversity, and host range is probably greatly underestimated. In this study, we applied several RT-PCR methods and a nano-luciferase-based immunoprecipitation system (LIPS) assay to analyze bovine serum samples from Bulgaria as well as wild ruminant sera from Germany and the Czech Republic. Using these methods, BovHepV infections were confirmed in Bulgarian cattle, with viral genomes detected in 6.9% and serological reactions against the BovHepV NS3 helicase domain in 10% of bovine serum samples. Genetic analysis demonstrated co-circulation of highly diverse BovHepV strains in Bulgarian cattle, and three novel BovHepV subtypes within the genotype 1 could be defined. Furthermore, application of a nested RT-PCR led to the first description of a BovHepV variant (genotype 2) in a wild ruminant species. The results of this study significantly enhance our knowledge of BovHepV distribution, genetic diversity, and host range.
- MeSH
- Genomics MeSH
- Hepacivirus * genetics MeSH
- Hepatitis C * MeSH
- Host Specificity MeSH
- Ruminants MeSH
- Cattle MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The present paper represents a contribution to the knowledge of the taxonomy of Monoctonia Starý aphid parasitoids obtained using the barcoding region of the mitochondrial COI gene. We discuss the phylogenetic position of the genus within the subtribe Monoctonina, redescribe known species, and describe Monoctonia japonica sp. n. from Japan in the association Pemphigus matsumurai Monzen/Populus maximowiczii. A key for species identification is provided. Also, we review and discuss the host records, origin, and geographical distribution of Monoctonia species. It is hypothesized that the genus Monoctonia evolved in Paleogene forests of the temperate (and subtropical) belt, most probably in the European part of the Mediterranean region, which is also the center of origin of their host plants.
- MeSH
- Animal Structures anatomy & histology growth & development MeSH
- Ecosystem MeSH
- Phylogeny MeSH
- Host Specificity MeSH
- Animal Distribution MeSH
- Wasps classification genetics growth & development physiology MeSH
- Organ Size MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Analytical methods can offer insights into the structure of biological networks, but mechanisms that determine the structure of these networks remain unclear. We conducted a synthesis based on 111 previously published datasets to assess a range of ecological and evolutionary mechanisms that may influence the plant-associated fungal interaction networks. We calculated the relative host effect on fungal community composition and compared nestedness and modularity among different mycorrhizal types and endophytic fungal guilds. We also assessed how plant-fungal network structure was related to host phylogeny, environmental and sampling properties. Orchid mycorrhizal fungal communities responded most strongly to host identity, but the effect of host was similar among all other fungal guilds. Community nestedness, which did not differ among fungal guilds, declined significantly with increasing mean annual precipitation on a global scale. Orchid and ericoid mycorrhizal fungal communities were more modular than ectomycorrhizal and root endophytic communities, with arbuscular mycorrhizal fungi in an intermediate position. Network properties among a broad suite of plant-associated fungi were largely comparable and generally unrelated to phylogenetic distance among hosts. Instead, network metrics were predominantly affected by sampling and matrix properties, indicating the importance of study design in properly inferring ecological patterns.