Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28607078
PubMed Central
PMC5495266
DOI
10.1073/pnas.1704750114
PII: 1704750114
Knihovny.cz E-zdroje
- Klíčová slova
- Rous sarcoma virus, envelope glycoprotein, receptor-independent entry, retrovirus, virus entry,
- MeSH
- genetické vektory * genetika metabolismus MeSH
- genové produkty env * genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- kur domácí MeSH
- lidé MeSH
- missense mutace * MeSH
- nádorové buněčné linie MeSH
- substituce aminokyselin MeSH
- transdukce genetická * MeSH
- virus Rousova sarkomu * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty env * MeSH
The extent of virus transmission among individuals and species is generally determined by the presence of specific membrane-embedded virus receptors required for virus entry. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor is the first and crucial step in determining host specificity. Using a well-established retroviral model-avian Rous sarcoma virus (RSV)-we analyzed changes in an RSV variant that had repeatedly been able to infect rodents. By envelope gene (env) sequencing, we identified eight mutations that do not match the already described mutations influencing the host range. Two of these mutations-one at the beginning (D32G) of the surface Env subunit (SU) and the other at the end of the fusion peptide region (L378S)-were found to be of critical importance, ensuring transmission to rodent, human, and chicken cells lacking the appropriate receptor. Furthermore, we carried out assays to examine the virus entry mechanism and concluded that these two mutations cause conformational changes in the Env variant and that these changes lead to an activated, or primed, state of Env (normally induced after Env interaction with the receptor). In summary, our results indicate that retroviral host range extension is caused by spontaneous Env activation, which circumvents the need for original cell receptor. This activation is, in turn, caused by mutations in various env regions.
Zobrazit více v PubMed
Parrish CR, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008;72:457–470. PubMed PMC
Rubin H. The early history of tumor virology: Rous, RIF, and RAV. Proc Natl Acad Sci USA. 2011;108:14389–14396. PubMed PMC
Svoboda J, Chyle P, Simkovic D, Hilgert I. Demonstration of the absence of infectious Rous virus in rat tumour XC, whose structurally intact cells produce Rous sarcoma when transferred to chicks. Folia Biol (Praha) 1963;9:77–81. PubMed
Temin HM. The DNA provirus hypothesis. Science. 1976;192:1075–1080. PubMed
Lounková A, et al. Molecular events accompanying rous sarcoma virus rescue from rodent cells and the role of viral gene complementation. J Virol. 2014;88:3505–3515. PubMed PMC
Svoboda J, Dourmashkin R. Rescue of Rous sarcoma virus from virogenic mammalian cells associated with chicken cells and treated with Sendai virus. J Gen Virol. 1969;4:523–529. PubMed
Weiss RA. In: Cellular Receptors and Viral Glycoproteins Involved in Retrovirus Entry. The Retroviridae. Levy JA, editor. Plenum Press; New York: 1993. pp. 1–108.
Young JA, Bates P, Varmus HE. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J Virol. 1993;67:1811–1816. PubMed PMC
Elleder D, et al. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J Virol. 2005;79:10408–10419. PubMed PMC
Chai N, Bates P. Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc Natl Acad Sci USA. 2006;103:5531–5536. PubMed PMC
Adkins HB, Brojatsch J, Young JA. Identification and characterization of a shared TNFR-related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required specifically for subgroup E viral entry. J Virol. 2000;74:3572–3578. PubMed PMC
Brojatsch J, Naughton J, Rolls MM, Zingler K, Young JA. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell. 1996;87:845–855. PubMed
Hunter E. Viral entry and receptors. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor Lab Press; Cold Spring Harbor, NY: 1997. pp. 71–120. PubMed
Rainey GJ, Natonson A, Maxfield LF, Coffin JM. Mechanisms of avian retroviral host range extension. J Virol. 2003;77:6709–6719. PubMed PMC
Taplitz RA, Coffin JM. Selection of an avian retrovirus mutant with extended receptor usage. J Virol. 1997;71:7814–7819. PubMed PMC
Amberg SM, Netter RC, Simmons G, Bates P. Expanded tropism and altered activation of a retroviral glycoprotein resistant to an entry inhibitor peptide. J Virol. 2006;80:353–359. PubMed PMC
Schwartz DE, Tizard R, Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983;32:853–869. PubMed
Aydin H, Smrke BM, Lee JE. Structural characterization of a fusion glycoprotein from a retrovirus that undergoes a hybrid 2-step entry mechanism. FASEB J. 2013;27:5059–5071. PubMed PMC
Bova CA, Olsen JC, Swanstrom R. The avian retrovirus env gene family: Molecular analysis of host range and antigenic variants. J Virol. 1988;62:75–83. PubMed PMC
Mitsialis SA, Katz RA, Svoboda J, Guntaka RV. Studies on the structure and organization of avian sarcoma proviruses in the rat XC cell line. J Gen Virol. 1983;64:1885–1893. PubMed
Hughes SH. The RCAS vector system. Folia Biol (Praha) 2004;50:107–119. PubMed
Bova-Hill C, Olsen JC, Swanstrom R. Genetic analysis of the Rous sarcoma virus subgroup D env gene: Mammal tropism correlates with temperature sensitivity of gp85. J Virol. 1991;65:2073–2080. PubMed PMC
Mothes W, Boerger AL, Narayan S, Cunningham JM, Young JA. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell. 2000;103:679–689. PubMed
Smith JG, Mothes W, Blacklow SC, Cunningham JM. The mature avian leukosis virus subgroup A envelope glycoprotein is metastable, and refolding induced by the synergistic effects of receptor binding and low pH is coupled to infection. J Virol. 2004;78:1403–1410. PubMed PMC
Hernandez LD, et al. Activation of a retroviral membrane fusion protein: Soluble receptor-induced liposome binding of the ALSV envelope glycoprotein. J Cell Biol. 1997;139:1455–1464. PubMed PMC
Smith JG, Cunningham JM. Receptor-induced thiolate couples Env activation to retrovirus fusion and infection. PLoS Pathog. 2007;3:e198. PubMed PMC
Rainey GJ, Coffin JM. Evolution of broad host range in retroviruses leads to cell death mediated by highly cytopathic variants. J Virol. 2006;80:562–570. PubMed PMC
Tsichlis PN, Conklin KF, Coffin JM. Mutant and recombinant avian retroviruses with extended host range. Proc Natl Acad Sci USA. 1980;77:536–540. PubMed PMC
Coffin JM. Virions at the gates: Receptors and the host-virus arms race. PLoS Biol. 2013;11:e1001574. PubMed PMC
Dorner AJ, Coffin JM. Determinants for receptor interaction and cell killing on the avian retrovirus glycoprotein gp85. Cell. 1986;45:365–374. PubMed
Postler TS, Desrosiers RC. The tale of the long tail: The cytoplasmic domain of HIV-1 gp41. J Virol. 2013;87:2–15. PubMed PMC
Dimitrov DS. Virus entry: Molecular mechanisms and biomedical applications. Nat Rev Microbiol. 2004;2:109–122. PubMed PMC
Barros M, et al. Membrane binding of HIV-1 matrix protein: Dependence on bilayer composition and protein lipidation. J Virol. 2016;90:4544–4555. PubMed PMC
Damico RL, Crane J, Bates P. Receptor-triggered membrane association of a model retroviral glycoprotein. Proc Natl Acad Sci USA. 1998;95:2580–2585. PubMed PMC
Damico R, Rong L, Bates P. Substitutions in the receptor-binding domain of the avian sarcoma and leukosis virus envelope uncouple receptor-triggered structural rearrangements in the surface and transmembrane subunits. J Virol. 1999;73:3087–3094. PubMed PMC
Gilbert JM, Hernandez LD, Balliet JW, Bates P, White JM. Receptor-induced conformational changes in the subgroup A avian leukosis and sarcoma virus envelope glycoprotein. J Virol. 1995;69:7410–7415. PubMed PMC
Barnard RJ, Elleder D, Young JA. Avian sarcoma and leukosis virus-receptor interactions: From classical genetics to novel insights into virus-cell membrane fusion. Virology. 2006;344:25–29. PubMed
Barnard RJ, Narayan S, Dornadula G, Miller MD, Young JA. Low pH is required for avian sarcoma and leukosis virus Env-dependent viral penetration into the cytosol and not for viral uncoating. J Virol. 2004;78:10433–10441. PubMed PMC
Melikyan GB, Barnard RJ, Markosyan RM, Young JA, Cohen FS. Low pH is required for avian sarcoma and leukosis virus Env-induced hemifusion and fusion pore formation but not for pore growth. J Virol. 2004;78:3753–3762. PubMed PMC
Narayan S, Barnard RJ, Young JA. Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity. J Virol. 2003;77:1977–1983. PubMed PMC
Netter RC, et al. Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate. J Virol. 2004;78:13430–13439. PubMed PMC
Damico R, Bates P. Soluble receptor-induced retroviral infection of receptor-deficient cells. J Virol. 2000;74:6469–6475. PubMed PMC
Myszka DG, et al. Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA. 2000;97:9026–9031. PubMed PMC
Babel AR, Bruce J, Young JA. The hr1 and fusion peptide regions of the subgroup B avian sarcoma and leukosis virus envelope glycoprotein influence low pH-dependent membrane fusion. PLoS One. 2007;2:e171. PubMed PMC
Melder DC, Yin X, Delos SE, Federspiel MJ. A charged second-site mutation in the fusion peptide rescues replication of a mutant avian sarcoma and leukosis virus lacking critical cysteine residues flanking the internal fusion domain. J Virol. 2009;83:8575–8586. PubMed PMC
Dorner AJ, Stoye JP, Coffin JM. Molecular basis of host range variation in avian retroviruses. J Virol. 1985;53:32–39. PubMed PMC
Konstantoulas CJ, Lamp B, Rumenapf TH, Indik S. Single amino acid substitution (G42E) in the receptor binding domain of mouse mammary tumour virus envelope protein facilitates infection of non-murine cells in a transferrin receptor 1-independent manner. Retrovirology. 2015;12:43. PubMed PMC
Ferrarone J, Knoper RC, Li R, Kozak CA. Second site mutation in the virus envelope expands the host range of a cytopathic variant of Moloney murine leukemia virus. Virology. 2012;433:7–11. PubMed PMC
Reeves JD, Schulz TF. The CD4-independent tropism of human immunodeficiency virus type 2 involves several regions of the envelope protein and correlates with a reduced activation threshold for envelope-mediated fusion. J Virol. 1997;71:1453–1465. PubMed PMC
Dubay JW, Roberts SJ, Brody B, Hunter E. Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J Virol. 1992;66:4748–4756. PubMed PMC
Haim H, et al. Contribution of intrinsic reactivity of the HIV-1 envelope glycoproteins to CD4-independent infection and global inhibitor sensitivity. PLoS Pathog. 2011;7:e1002101. PubMed PMC
White TA, et al. Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: Strain-dependent variation in quaternary structure. PLoS Pathog. 2010;6:e1001249. PubMed PMC
McRoy WC, Baric RS. Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51 encode determinants of host range expansion. J Virol. 2008;82:1414–1424. PubMed PMC
Forni D, et al. The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses. Sci Rep. 2015;5:14480. PubMed PMC
Duran-Reynals F. The reciprocal infection of ducks and chickens with tumor inducing viruses. Cancer Res. 1942;2:343–369.
Geryk J, Sainerová H, Sovová V, Svoboda J. Characterization of cryptovirogenic, virus-productive and helper-dependent virogenic hamster tumour cell lines. Folia Biol (Praha) 1984;30:152–164. PubMed
Svoboda J, Chyle P. Malignization of rat embryonic cells by Rous sarcoma virus in vitro. Folia Biol (Praha) 1963;9:329–342. PubMed
Roberts CT, Jr, Kurre P. Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication. Cancer Res. 2013;73:3200–3205. PubMed
Sattentau QJ. Cell-to-cell spread of retroviruses. Viruses. 2010;2:1306–1321. PubMed PMC
Wurdinger T, et al. Extracellular vesicles and their convergence with viral pathways. Adv Virol. 2012;2012:767694. PubMed PMC
Svoboda J, et al. Characterization of exogenous proviral sequences in hamster tumor cell lines transformed by Rous sarcoma virus rescued from XC cells. Virology. 1983;128:195–209. PubMed
Svoboda J. Presence of chicken tumour virus in the sarcoma of the adult rat inoculated after birth with Rous sarcoma tissue. Nature. 1960;186:980–981. PubMed
Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK. The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology. 1998;248:295–304. PubMed
Diamond L. Two spontaneously transformed cell lines derived from the same hamster embryo culture. Int J Cancer. 1967;2:143–152. PubMed
Ogert RA, Lee LH, Beemon KL. Avian retroviral RNA element promotes unspliced RNA accumulation in the cytoplasm. J Virol. 1996;70:3834–3843. PubMed PMC
Federspiel MJ, Hughes SH. Retroviral gene delivery. Methods Cell Biol. 1997;52:179–214. PubMed
Earp LJ, Delos SE, Netter RC, Bates P, White JM. The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH. J Virol. 2003;77:3058–3066. PubMed PMC
Gladkowski W, Chojnacka A, Kielbowicz G, Trziszka T, Wawrzenczyk C. Isolation of pure phospholipid fraction from egg yolk. J Am Oil Chem Soc. 2012;89:179–182.
Rouser G, Fkeischer S, Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5:494–496. PubMed
Fábryová H, Hron T, Kabíčková H, Poss M, Elleder D. Induction and characterization of a replication competent cervid endogenous gammaretrovirus (CrERV) from mule deer cells. Virology. 2015;485:96–103. PubMed
The Current View of Retroviruses as Seen from the Shoulders of a Giant
The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A