Cytokine response to the RSV antigen delivered by dendritic cell-directed vaccination in congenic chicken lines
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28381295
PubMed Central
PMC5382389
DOI
10.1186/s13567-017-0423-8
PII: 10.1186/s13567-017-0423-8
Knihovny.cz E-zdroje
- MeSH
- antigeny virové imunologie MeSH
- buněčná imunita imunologie MeSH
- CD antigeny imunologie MeSH
- cytokiny fyziologie MeSH
- dendritické buňky imunologie virologie MeSH
- kur domácí imunologie virologie MeSH
- lektiny typu C imunologie MeSH
- protilátky bispecifické imunologie MeSH
- ptačí sarkom imunologie prevence a kontrola MeSH
- receptory buněčného povrchu imunologie MeSH
- vedlejší histokompatibilní antigeny imunologie MeSH
- virové vakcíny imunologie MeSH
- virus Rousova sarkomu imunologie MeSH
- zvířata kongenní imunologie virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny virové MeSH
- CD antigeny MeSH
- cytokiny MeSH
- DEC-205 receptor MeSH Prohlížeč
- lektiny typu C MeSH
- protilátky bispecifické MeSH
- receptory buněčného povrchu MeSH
- vedlejší histokompatibilní antigeny MeSH
- virové vakcíny MeSH
Systems of antigen delivery into antigen-presenting cells represent an important novel strategy in chicken vaccine development. In this study, we verified the ability of Rous sarcoma virus (RSV) antigens fused with streptavidin to be targeted by specific biotinylated monoclonal antibody (anti-CD205) into dendritic cells and induce virus-specific protective immunity. The method was tested in four congenic lines of chickens that are either resistant or susceptible to the progressive growth of RSV-induced tumors. Our analyses confirmed that the biot-anti-CD205-SA-FITC complex was internalized by chicken splenocytes. In the cytokine expression profile, several significant differences were evident between RSV-challenged progressor and regressor chicken lines. A significant up-regulation of IL-2, IL-12, IL-15, and IL-18 expression was detected in immunized chickens of both regressor and progressor groups. Of these cytokines, IL-2 and IL-12 were most up-regulated 14 days post-challenge (dpc), while IL-15 and IL-18 were most up-regulated at 28 dpc. On the contrary, IL-10 expression was significantly down-regulated in all immunized groups of progressor chickens at 14 dpc. We detected significant up-regulation of IL-17 in the group of immunized progressors. LITAF down-regulation with iNOS up-regulation was especially observed in the progressor group of immunized chickens that developed large tumors. Based on the increased expression of cytokines specific for activated dendritic cells, we conclude that our system is able to induce partial stimulation of specific cell types involved in cell-mediated immunity.
BIOPHARM Research Institute of Biopharmacy and Veterinary Drugs Jílové U Prahy Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–1022. doi: 10.1038/ni.2703. PubMed DOI PMC
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–268. doi: 10.1038/nri3175. PubMed DOI PMC
Burkholder B, Huang R-Y, Burgess R, Luo S, Jones VS, Zhang W, Lv Z-Q, Gao C-Y, Wang B-L, Zhang Y-M, Huang R-P. Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta. 2014;1845:182–201. PubMed
Staines K, Young JR, Butter C. Expression of chicken DEC205 reflects the unique structure and function of the avian immune system. PLoS One. 2013;8:e51799. doi: 10.1371/journal.pone.0051799. PubMed DOI PMC
Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375:151–155. doi: 10.1038/375151a0. PubMed DOI
Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8 + T cell tolerance. J Exp Med. 2002;196:1627–1638. doi: 10.1084/jem.20021598. PubMed DOI PMC
Trumpfheller C, Finke JS, López CB, Moran TM, Moltedo B, Soares H, Huang Y, Schlesinger SJ, Park CG, Nussenzweig MC, Granelli-Piperno A, Steinman RM. Intensified and protective CD4 + T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med. 2006;203:607–617. doi: 10.1084/jem.20052005. PubMed DOI PMC
Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. Immunity. 2008;29:319–324. doi: 10.1016/j.immuni.2008.08.001. PubMed DOI
Stanek O, Linhartova I, Majlessi L, Leclerc C, Sebo P. Complexes of streptavidin-fused antigens with biotinylated antibodies targeting receptors on dendritic cell surface: a novel tool for induction of specific T-cell immune responses. Mol Biotechnol. 2012;51:221–232. doi: 10.1007/s12033-011-9459-6. PubMed DOI
Dong H, Stanek O, Salvador FR, Länger U, Morillon E, Ung C, Sebo P, Leclerc C, Majlessi L. Induction of protective immunity against Mycobacterium tuberculosis by delivery of ESX antigens into airway dendritic cells. Mucosal Immunol. 2013;6:522–534. doi: 10.1038/mi.2012.92. PubMed DOI
Brugge JS, Erikson RL. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature. 1977;269:346–348. doi: 10.1038/269346a0. PubMed DOI
Plachy J, Pink JR, Hála K. Biology of the chicken MHC (B complex) Crit Rev Immunol. 1992;12:47–79. PubMed
Plachý J, Hála K, Hejnar J, Geryk J, Svoboda J. src-specific immunity in inbred chickens bearing v-src DNA- and RSV-induced tumors. Immunogenetics. 1994;40:257–265. doi: 10.1007/BF00189970. PubMed DOI
Plachý JV, Hejnar JV, Trtková K, Trejbalová K, Svoboda J, Hála K. DNA vaccination against v-src oncogene-induced tumours in congenic chickens. Vaccine. 2001;19:4526–4535. doi: 10.1016/S0264-410X(01)00181-5. PubMed DOI
Taylor RL, Ewert DL, England JM, Halpern MS. Major histocompatibility (B) complex control of the growth pattern of v-src DNA-induced primary tumors. Virology. 1992;191:477–479. doi: 10.1016/0042-6822(92)90214-A. PubMed DOI
Gelman IH, Hanafusa H. src-specific immune regression of Rous sarcoma virus-induced tumors. Cancer Res. 1993;53:915–920. PubMed
Kaufman J, Völk H, Wallny HJ. A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism. Immunol Rev. 1995;143:63–88. doi: 10.1111/j.1600-065X.1995.tb00670.x. PubMed DOI
Kaufman J, Milne S, Göbel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S. The chicken B locus is a minimal essential major histocompatibility complex. Nature. 1999;401:923–925. doi: 10.1038/44856. PubMed DOI
Wallny H-J, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, Skjødt K, Vainio O, Vilbois F, Wiles MV, Kaufman J. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci U S A. 2006;103:1434–1439. doi: 10.1073/pnas.0507386103. PubMed DOI PMC
Walker BA, Hunt LG, Sowa AK, Skjødt K, Göbel TW, Lehner PJ, Kaufman J. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes. Proc Natl Acad Sci U S A. 2011;108:8396–8401. doi: 10.1073/pnas.1019496108. PubMed DOI PMC
Zhang L, Katselis GS, Moore RE, Lekpor K, Goto RM, Hunt HD, Lee TD, Miller MM. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos. Dev Comp Immunol. 2012;37:446–456. doi: 10.1016/j.dci.2012.03.007. PubMed DOI
Hofmann M, Nussbaum AK, Emmerich NP, Stoltze L, Schild H. Mechanisms of MHC class I-restricted antigen presentation. Expert Opin Ther Targets. 2001;5:379–393. doi: 10.1517/14728222.5.3.379. PubMed DOI
Salomonsen J, Chattaway JA, Chan ACY, Parker A, Huguet S, Marston DA, Rogers SL, Wu Z, Smith AL, Staines K, Butter C, Riegert P, Vainio O, Nielsen L, Kaspers B, Griffin DK, Yang F, Zoorob R, Guillemot F, Auffray C, Beck S, Skjødt K, Kaufman J. Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns. PLoS Genet. 2014;10:e1004417. doi: 10.1371/journal.pgen.1004417. PubMed DOI PMC
Plachý J. Hierarchy of the B (MHC) haplotypes controlling resistance to rous sarcomas in a model of inbred lines of chickens. Folia Biol (Praha) 1984;30:412–425. PubMed
Plachý J. The B-G region genes of the chicken MHC are responsible for lethal graft-versus-host disease in newly hatched chickens. Folia Biol (Praha) 1988;34:84–98. PubMed
Kaufman J, Skjødt K, Salomonsen J. The B-G multigene family of the chicken major histocompatibility complex. Crit Rev Immunol. 1991;11:113–143. PubMed
Salomonsen J, Eriksson H, Skjødt K, Lundgreen T, Simonsen M, Kaufman J. The “adjuvant effect” of the polymorphic B-G antigens of the chicken major histocompatibility complex analyzed using purified molecules incorporated in liposomes. Eur J Immunol. 1991;21:649–658. doi: 10.1002/eji.1830210317. PubMed DOI
Goto RM, Wang Y, Taylor RL, Wakenell PS, Hosomichi K, Shiina T, Blackmore CS, Briles WE, Miller MM. BG1 has a major role in MHC-linked resistance to malignant lymphoma in the chicken. Proc Natl Acad Sci U S A. 2009;106:16740–16745. doi: 10.1073/pnas.0906776106. PubMed DOI PMC
Plachý J, Vilhelmová M. Syngeneic lines of chickens. VII. The lines derived from the recombinants at the B complex (MHC) of Rous sarcoma regressor and progressor inbred lines of chickens. Folia Biol (Praha) 1984;30:189–201. PubMed
Méric C, Spahr PF. Rous sarcoma virus nucleic acid-binding protein p12 is necessary for viral 70S RNA dimer formation and packaging. J Virol. 1986;60:450–459. PubMed PMC
Hong YH, Lillehoj HS, Lillehoj EP, Lee SH. Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Vet Immunol Immunopathol. 2006;114:259–272. doi: 10.1016/j.vetimm.2006.08.006. PubMed DOI
Rothwell L, Young JR, Zoorob R, Whittaker CA, Hesketh P, Archer A, Smith AL, Kaiser P. Cloning and characterization of chicken IL-10 and its role in the immune response to Eimeria maxima. J Immunol. 2004;173:2675–2682. doi: 10.4049/jimmunol.173.4.2675. PubMed DOI
Jolliffe IT. Principal Component Analysis. New York: Springer-Verlag; 2002.
Martin MM, Lindqvist L. The pH dependence of fluorescein fluorescence. J Lumin. 1975;10:381–390. doi: 10.1016/0022-2313(75)90003-4. DOI
Vu Manh T-P, Marty H, Sibille P, Le Vern Y, Kaspers B, Dalod M, Schwartz-Cornil I, Quéré P. Existence of conventional dendritic cells in Gallus gallus revealed by comparative gene expression profiling. J Immunol. 2014;192:4510–4517. doi: 10.4049/jimmunol.1303405. PubMed DOI
Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol. 2002;3:600–614. doi: 10.1038/nrm883. PubMed DOI
Martins KAO, Bavari S, Salazar AM. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines. 2015;14:447–459. doi: 10.1586/14760584.2015.966085. PubMed DOI
Dodge WH, Moscovici C. Effect of poly I: C on transformation by Rous sarcoma virus. Proc Soc Exp Biol Med. 1972;139:1407–1412. doi: 10.3181/00379727-139-36373. PubMed DOI
Rock KL. A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today. 1996;17:131–137. doi: 10.1016/0167-5699(96)80605-0. PubMed DOI
Kaufman J, Wallny HJ. Chicken MHC molecules, disease resistance and the evolutionary origin of birds. Curr Top Microbiol Immunol. 1996;212:129–141. PubMed
Hofmann A, Plachy J, Hunt L, Kaufman J, Hala K. v-src oncogene-specific carboxy-terminal peptide is immunoprotective against Rous sarcoma growth in chickens with MHC class I allele B-F12. Vaccine. 2003;21:4694–4699. doi: 10.1016/S0264-410X(03)00516-4. PubMed DOI
Koch M, Camp S, Collen T, Avila D, Salomonsen J, Wallny HJ, van Hateren A, Hunt L, Jacob JP, Johnston F, Marston DA, Shaw I, Dunbar PR, Cerundolo V, Jones EY, Kaufman J. Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity. 2007;27:885–899. doi: 10.1016/j.immuni.2007.11.007. PubMed DOI
Butter C, Staines K, van Hateren A, Davison TF, Kaufman J. The peptide motif of the single dominantly expressed class I molecule of the chicken MHC can explain the response to a molecular defined vaccine of infectious bursal disease virus (IBDV) Immunogenetics. 2013;65:609–618. doi: 10.1007/s00251-013-0705-x. PubMed DOI PMC
Hou Y, Guo Y, Wu C, Shen N, Jiang Y, Wang J. Prediction and identification of T cell epitopes in the H5N1 influenza virus nucleoprotein in chicken. PLoS One. 2012;7:e39344. doi: 10.1371/journal.pone.0039344. PubMed DOI PMC
Reemers SS, van Haarlem DA, Sijts AJ, Vervelde L, Jansen CA. Identification of novel avian influenza virus derived CD8 + T-cell epitopes. PLoS One. 2012;7:e31953. doi: 10.1371/journal.pone.0031953. PubMed DOI PMC
Andrews DM, Andoniou CE, Scalzo AA, van Dommelen SLH, Wallace ME, Smyth MJ, Degli-Esposti MA. Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol. 2005;42:547–555. doi: 10.1016/j.molimm.2004.07.040. PubMed DOI
Agaugué S, Marcenaro E, Ferranti B, Moretta L, Moretta A. Human natural killer cells exposed to IL-2, IL-12, IL-18, or IL-4 differently modulate priming of naive T cells by monocyte-derived dendritic cells. Blood. 2008;112:1776–1783. doi: 10.1182/blood-2008-02-135871. PubMed DOI
Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM. IL-23 and IL-17 in the establishment of protective pulmonary CD4 + T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007;8:369–377. doi: 10.1038/ni1449. PubMed DOI
Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM. Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A. 2009;106:1915–1919. doi: 10.1073/pnas.0813192106. PubMed DOI PMC
Kaufman J. Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics. 1999;50:228–236. doi: 10.1007/s002510050597. PubMed DOI
Rogers SL, Göbel TW, Viertlboeck BC, Milne S, Beck S, Kaufman J. Characterization of the chicken C-type lectin-like receptors B-NK and B-lec suggests that the NK complex and the MHC share a common ancestral region. J Immunol. 2005;174:3475–3483. doi: 10.4049/jimmunol.174.6.3475. PubMed DOI
Rogers SL, Kaufman J. High allelic polymorphism, moderate sequence diversity and diversifying selection for B-NK but not B-lec, the pair of lectin-like receptor genes in the chicken MHC. Immunogenetics. 2008;60:461–475. doi: 10.1007/s00251-008-0307-1. PubMed DOI
Shiina T, Briles WE, Goto RM, Hosomichi K, Yanagiya K, Shimizu S, Inoko H, Miller MM. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease. J Immunol. 2007;178:7162–7172. doi: 10.4049/jimmunol.178.11.7162. PubMed DOI
Rogers S, Shaw I, Ross N, Nair V, Rothwell L, Kaufman J, Kaiser P. Analysis of part of the chicken Rfp-Y region reveals two novel lectin genes, the first complete genomic sequence of a class I alpha-chain gene, a truncated class II beta-chain gene, and a large CR1 repeat. Immunogenetics. 2003;55:100–108. PubMed
Straub C, Neulen M-L, Sperling B, Windau K, Zechmann M, Jansen CA, Viertlboeck BC, Göbel TW. Chicken NK cell receptors. Dev Comp Immunol. 2013;41:324–333. doi: 10.1016/j.dci.2013.03.013. PubMed DOI
Viertlboeck BC, Wortmann A, Schmitt R, Plachý J, Göbel TW. Chicken C-type lectin-like receptor B-NK, expressed on NK and T cell subsets, binds to a ligand on activated splenocytes. Mol Immunol. 2008;45:1398–1404. doi: 10.1016/j.molimm.2007.08.024. PubMed DOI