Proviruses selected for high and stable expression of transduced genes accumulate in broadly transcribed genome areas
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20147411
PubMed Central
PMC2863777
DOI
10.1128/jvi.02511-09
PII: JVI.02511-09
Knihovny.cz E-zdroje
- MeSH
- chromozomy virologie MeSH
- exprese genu MeSH
- genetická terapie metody MeSH
- genetické vektory MeSH
- integrace viru * MeSH
- kur domácí MeSH
- proviry genetika fyziologie MeSH
- ptačí sarkom virologie MeSH
- viry ptačího sarkomu genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Retroviruses and retrovirus-derived vectors integrate nonrandomly into the genomes of host cells with specific preferences for transcribed genes, gene-rich regions, and CpG islands. However, the genomic features that influence the transcriptional activities of integrated retroviruses or retroviral vectors are poorly understood. We report here the cloning and characterization of avian sarcoma virus integration sites from chicken tumors. Growing progressively, dependent on high and stable expression of the transduced v-src oncogene, these tumors represent clonal expansions of cells bearing transcriptionally active replication-defective proviruses. Therefore, integration sites in our study distinguished genomic loci favorable for the expression of integrated retroviruses and gene transfer vectors. Analysis of integration sites from avian sarcoma virus-induced tumors showed strikingly nonrandom distribution, with proviruses found prevalently within or close to transcription units, particularly in genes broadly expressed in multiple tissues but not in tissue-specifically expressed genes. We infer that proviruses integrated in these genomic areas efficiently avoid transcriptional silencing and remain active for a long time during the growth of tumors. Defining the differences between unselected retroviral integration sites and sites selected for long-terminal-repeat-driven gene expression is relevant for retrovirus-mediated gene transfer and has ramifications for gene therapy.
Zobrazit více v PubMed
Barr, S. D., J. Leipzig, P. Shinn, J. R. Ecker, and F. D. Bushman. 2005. Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J. Virol. 79:12035-12044. PubMed PMC
Brady, T., L. M. Agosto, N. Malani, C. C. Berry, U. O'Doherty, and F. Bushman. 2009. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23:1461-1471. PubMed PMC
Brady, T., Y. N. Lee, K. Ronen, N. Malani, C. C. Berry, P. D. Bieniasz, and F. D. Bushman. 2009. Integration target site selection by a resurrected human endogenous retrovirus. Genes Dev. 23:633-642. PubMed PMC
Callahan, R., and G. H. Smith. 2008. Common integration sites for MMTV in viral induced mouse mammary tumor. J. Mammary Gland Biol. Neoplasia 13:309-321. PubMed PMC
Caron, H., B. van Schaik, M. van der Mee, F. Baas, G. Riggins, P. van Sluis, M.-C. Hermus, R. van Asperen, K. Boon, P. A. Voûte, S. Heisterkamp, A. van Kampen, and R. Versteeg. 2001. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291:1289-1292. PubMed
Ciuffi, A., and F. Bushman. 2006. Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet. 22:388-395. PubMed
Ciuffi, A., M. Llano, E. Poeschla, C. Hoffmann, J. Leipzig, P. Shinn, J. R. Ecker, and F. Bushman. 2005. A role of LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11:1287-1289. PubMed
de Ridder, J., A. Uren, J. Kool, M. Reinders, and L. Wessels. 2006. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screen. PLoS Comput. Biol. 2:e166. PubMed PMC
Derse, D., B. Crise, Y. Li, G. Princler, N. Lum, C. Stewart, C. F. McGrath, S. H. Hughes, D. J. Munroe, and X. Wu. 2007. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J. Virol. 81:6731-6741. PubMed PMC
Elleder, D., A. Pavlíček, J. Pačes, and J. Hejnar. 2002. Preferential integration of human immunodeficiency virus type 1 into genes, cytogenetic R bands and GC-rich DNA regions: insight from the human genome sequence. FEBS Lett. 517:285-286. PubMed
Engelman, A. 2005. The ups and downs of gene expression and retroviral DNA integration. Proc. Natl. Acad. Sci. U. S. A. 102:1275-1276. PubMed PMC
Faschinger, A., F. Rouault, J. Sollner, A. Lukas, B. Salmons, W. H. Günzburg, and S. Indik. 2008. Mouse mammary tumor virus integration site selection in human and mouse genomes. J. Virol. 82:1360-1367. PubMed PMC
Federspiel, M. J., and S. H. Hughes. 1994. Effects of the gag region on genome stability: avian retroviral vectors that contain sequences from the Bryan strain of Rous sarcoma virus. Virology 203:211-220. PubMed
Gudkov, A. V., I. B. Obukh, S. M. Serov, and B. S. Naroditsky. 1981. Variety of endogenous proviruses in the genomes of chickens of different breeds. J. Gen. Virol. 57:85-94. PubMed
Hacein-Bey-Abina, S., A. Garrigue, G. P. Wang, J. Soulier, A. Lim, E. Morillon, E. Clappier, L. Caccavelli, E. Delabesse, K. Beldjord, V. Asnafi, E. MacIntyre, L. Dal Cortivo, I. Radford, N. Brousse, F. Sigaux, D. Moshous, J. Hauer, A. Borkhardt, B. H. Belohradsky, U. Wintergerst, M. C. Velez, L. Leiva, R. Sorensen, N. Wulffraat, S. Blanche, F. D. Bushman, A. Fischer, and M. Cavazzana-Calvo. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118:3132-3142. PubMed PMC
Hejnar, J., J. Svoboda, J. Geryk, V. J. Fincham, and R. Hák. 1994. High rate of morphological reversion in tumor cell line H-19 associated with permanent transcriptional suppression of the LTR, v-src, LTR provirus. Cell Growth Differ. 5:277-285. PubMed
Hejnar, J., P. Hájková, J. Plachý, D. Elleder, V. Stepanets, and J. Svoboda. 2001. CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. Proc. Natl. Acad. Sci. U. S. A. 98:565-569. PubMed PMC
Himly, M., D. N. Foster, I. Bottoli, J. S. Iacovoni, and P. K. Vogt. 1998. The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248:295-304. PubMed
Holman, A. G., and J. M. Coffin. 2005. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc. Natl. Acad. Sci. U. S. A. 102:6103-6107. PubMed PMC
Holmes-Son, M. L., R. S. Appa, and S. A. Chow. 2001. Molecular genetics and target site specificity of retroviral integration. Adv. Genet. 43:33-69. PubMed
Hu, J., G. Renaud, T. J. Gomes, A. Ferris, P. C. Hendrie, R. E. Donahue, S. H. Hughes, T. G. Wolfsberg, D. W. Russell, and C. E. Dunbar. 2008. Reduced genotoxicity of avian sarcoma leukosis virus vectors in rhesus long-term repopulating cells compared to standard murine retrovirus vectors. Mol. Ther. 16:1617-1623. PubMed PMC
Hu, J., A. Ferris, A. Larochelle, A. E. Krouse, M. E. Metzger, R. E. Donahue, S. H. Hughes, and C. E. Dunbar. 2007. Transduction of rhesus macaque hematopoietic stem and progenitor cells with avian sarcoma and leukosis virus vectors. Hum. Gene Ther. 18:691-700. PubMed
Hubbard, T. J., B. L. Aken, S. Ayling, B. Ballester, K. Beal, E. Bragin, S. Brent, Y. Chen, P. Clapham, L. Clarke, G. Coates, S. Fairley, S. Fitzgerald, J. Fernandez-Banet, L. Gordon, S. Graf, S. Haider, M. Hammond, R. Holland, K. Howe, A. Jenkinson, N. Johnson, A. Kahari, D. Keefe, S. Keenan, R. Kinsella, F. Kokocinski, E. Kulesha, D. Lawson, I. Longden, K. Megy, P. Meidl, B. Overduin, A. Parker, B. Pritchard, D. Rios, M. Schuster, G. Slater, D. Smedley, W. Spooner, G. Spudich, S. Trevanion, A. Vilella, J. Vogel, S. White, S. Wilder, A. Zadissa, E. Birney, F. Cunningham, V. Curwen, R. Durbin, X. M. Fernandez-Suarez, J. Herrero, A. Kasprzyk, G. Proctor, J. Smith, S. Searle, and P. Flicek. 2009. Ensembl 2009. Nucleic Acids Res. 37(Database issue):D690-D697. PubMed PMC
International Chicken Genome Sequencing Consortium. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695-716. PubMed
Jordan, A., P. Defechereux, and E. Verdin. 2001. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 20:1726-1738. PubMed PMC
Jordan, A., D. Bisgrove, and E. Verdin. 2003. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22:1868-1877. PubMed PMC
Kent, W. J. 2002. BLAT—the BLAST-like alignment tool. Genome Res. 12:656-664. PubMed PMC
Lewinski, M. K., D. Bisgrove, P. Shinn, H. Chen, C. Hoffmann, S. Hannenhalli, E. Verdin, C. C. Berry, J. R. Ecker, and F. D. Bushman. 2005. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79:6610-6619. PubMed PMC
Mager, D. L. 1999. Human endogenous retroviruses and pathogenesis: genomic considerations. Trends Microbiol. 7:431. PubMed
Maxfield, L. F., C. D. Fraize, and J. M. Coffin. 2005. Relationship between retroviral DNA-integration-site selection and host cell transcription. Proc. Natl. Acad. Sci. U. S. A. 102:1436-1441. PubMed PMC
Meehan, A. M., D. T. Saenz, J. H. Morrison, J. A. Garcia-Rivera, M. Peretz, M. Llano, and E. M. Poeschla. 2009. LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors. PloS Pathog. 5:e1000522. PubMed PMC
Meekings, K. N., J. Leipzig, F. D. Bushman, G. P. Taylor, and C. R. M. Bangham. 2008. HTLV-1 integration into transcriptionally active genomic regions is associated with proviral expression and with HAM/TSP. PloS Pathog. 4:e1000027. PubMed PMC
Mitchell, R. S., B. F. Beitzel, A. R. W. Schroder, P. Shinn, H. Chen, C. C. Berry, J. R. Ecker, and F. D. Bushman. 2004. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PloS Biol. 2:1-11. PubMed PMC
Narezkina, A., K. D. Taganov, S. Litwin, R. Stoyanova, J. Hayashi, C. Seeger, A. M. Skalka, and R. A. Katz. 2004. Genome-wide analyses of avian sarcoma virus integration sites. J. Virol. 78:11656-11663. PubMed PMC
Pajer, P., V. Pečenka, J. Králová, V. Karafiát, D. Průková, Z. Zemanová, R. Kodet, and M. Dvořák. 2006. Identification of potential human oncogenes by mapping the common viral integration sites in avian nephroblastoma. Cancer Res. 66:78-86. PubMed
Pavlicek, A., K. Jabbari, J. Paces, V. Paces, J. Hejnar, and G. Bernardi. 2001. Similar integration but different stability of Alus and LINEs in the human genome. Gene 276:39-45. PubMed
Plachý, J., K. Hála, J. Hejnar, J. Geryk, and J. Svoboda. 1994. src-specific immunity in inbred chickens bearing v-src DNA- and RSV-induced tumors. Immunogenetics 40:257-265. PubMed
Reinišová, M., A. Pavlíček, P. Divina, J. Geryk, J. Plachý, and J. Hejnar. 2008. Target site preferences of subgroup C Rous sarcoma virus integration into the chicken DNA. Open Genomics J. 1:e6-12.
Rynditch, A., F. Kadi, J. Geryk, S. Zoubak, J. Svoboda, and G. Bernardi. 1991. The isopycnic, compartmentalized integration of Rous sarcoma virus sequences. Gene 106:165-172. PubMed
Saccone, S., C. Federico, and G. Bernardi. 2002. Localization of gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. Gene 300:169-178. PubMed
Sayers, E. W., T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, M. Feolo, L. Y. Geer, W. Helmberg, Y. Kapustin, D. Landsman, D. J. Lipman, T. L. Madden, D. R. Maglott, V. Miller, I. Mizrachi, J. Ostell, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, M. Shumway, K. Sirotkin, A. Souvorov, G. Starchenko, T. A. Tatusova, L. Wagner, E. Yaschenko, and J. Ye. 2009. Databse resources of the National Center for Biotechnology Information. Nucleic Acids Res. 37(Database issue):D5-D15. PubMed PMC
Schroeder, A. R., P. Shinn, H. Chen, C. Berry, J. R. Ecker, and F. Bushman. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521-529. PubMed
Smit, A. F. 1999. Interspersed repeats and other momentos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9:657-663. PubMed
Sutherland, H., and W. A. Bickmore. 2009. Transription factories: gene expression in unions? Nat. Rev. 10:457-466. PubMed
Suzuki, T., H. Schen, K. Akagi, H. C. Morse, J. D. Malley, D. Q. Naiman, N. A. Jenkins, and N. G. Copeland. 2002. New genes involved in cancer identified by retroviral tagging. Nat. Genet. 32:166-174. PubMed
Svoboda, J., J. Plachý, J. Hejnar, I. Karakoz, R. V. Guntaka, and J. Geryk. 1992. Tumor induction by the LTR, v-src, LTR DNA in four B (MHC) congenic lines of chickens. Immunogenetics 35:309-315. PubMed
Weidhaas, J. B., E. L. Angelichio, S. Fenner, and J. M. Coffin. 2000. Relationship between retroviral DNA integration and gene expression. J. Virol. 74:8382-8389. PubMed PMC
Wu, X., Y. Li, B. Crise, and S. M. Burgess. 2003. Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749-1751. PubMed
Wu, X., Y. Li, B. Crise, S. M. Burgess, and D. J. Munroe. 2005. Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J. Virol. 79:5211-5214. PubMed PMC
Yang, Y., E. F. Vanin, M. A. Whitt, M. Fornerod, R. Zwart, R. D. Schneiderman, G. Grosveld, and A. W. Nienhuis. 1995. Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein. Hum. Gene Ther. 6:1203-1213. PubMed
Heterologous avian system for quantitative analysis of Syncytin-1 interaction with ASCT2 receptor
Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation
Retroviruses and retroelements in diseases and in gene therapy: 15 years later