Proviruses with Long-Term Stable Expression Accumulate in Transcriptionally Active Chromatin Close to the Gene Regulatory Elements: Comparison of ASLV-, HIV- and MLV-Derived Vectors

. 2018 Mar 08 ; 10 (3) : . [epub] 20180308

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29517993

Individual groups of retroviruses and retroviral vectors differ in their integration site preference and interaction with the host genome. Hence, immediately after infection genome-wide distribution of integrated proviruses is non-random. During long-term in vitro or persistent in vivo infection, the genomic position and chromatin environment of the provirus affects its transcriptional activity. Thus, a selection of long-term stably expressed proviruses and elimination of proviruses, which have been gradually silenced by epigenetic mechanisms, helps in the identification of genomic compartments permissive for proviral transcription. We compare here the extent and time course of provirus silencing in single cell clones of the K562 human myeloid lymphoblastoma cell line that have been infected with retroviral reporter vectors derived from avian sarcoma/leukosis virus (ASLV), human immunodeficiency virus type 1 (HIV) and murine leukaemia virus (MLV). While MLV proviruses remain transcriptionally active, ASLV proviruses are prone to rapid silencing. The HIV provirus displays gradual silencing only after an extended time period in culture. The analysis of integration sites of long-term stably expressed proviruses shows a strong bias for some genomic features-especially integration close to the transcription start sites of active transcription units. Furthermore, complex analysis of histone modifications enriched at the site of integration points to the accumulation of proviruses of all three groups in gene regulatory segments, particularly close to the enhancer loci. We conclude that the proximity to active regulatory chromatin segments correlates with stable provirus expression in various retroviral species.

Zobrazit více v PubMed

Trinité B., Ohlson E.C., Voznesensky I., Rana S.P., Chan C.N., Mahajan S., Alster J., Burke S.A., Wodarz D., Levy D.N. An HIV-1 replication pathway utilizing reverse transcription products that fail to integrate. J. Virol. 2013;87:12701–12720. doi: 10.1128/JVI.01939-13. PubMed DOI PMC

Elleder D., Pavlíček A., Pačes J., Hejnar J. Preferential integration of human immunodeficiency virus type 1 into genes, cytogenetic R bands and GC-rich DNA regions: Insight from the human genome sequence. FEBS Lett. 2002;517:285–286. doi: 10.1016/S0014-5793(02)02612-1. PubMed DOI

Schröder A.R., Shinn P., Chen H., Berry C., Ecker J.R., Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110:521–529. doi: 10.1016/S0092-8674(02)00864-4. PubMed DOI

Wu X., Li Y., Crise B., Burgess S.M. Transcription start regions in the human genome are favored targets for MLV integration. Science. 2003;300:1749–1751. doi: 10.1126/science.1083413. PubMed DOI

Mitchell R.S., Beitzel1 B.F., Schroder A.R.W., Shinn P., Chen H., Berry C.C., Ecker J.R., Bushman J.D. Retroviral DNA integration: ASLV, HIV and MLV show distinct target site preferences. PLoS Biol. 2004;2:e234. doi: 10.1371/journal.pbio.0020234. PubMed DOI PMC

Crise B., Li Y., Yuan C., Morcock D.R., Whitby D., Munroe D.J., Arthur L.O., Wu X. Simian immunodeficiency virus integration preference is similar to that of human immunodeficiency virus type 1. J. Virol. 2005;79:12199–12204. doi: 10.1128/JVI.79.19.12199-12204.2005. PubMed DOI PMC

De Ravin S.S., Su L., Theobald N., Choi U., Macpherson J.L., Poidinger M., Symonds G., Pond S.M., Ferris A.L., Hughes S.H., et al. Enhancers are major targets for murine leukemia virus vector integration. J. Virol. 2014;88:4504–4513. doi: 10.1128/JVI.00011-14. PubMed DOI PMC

Narezkina A., Taganov K.D., Litwin S., Stoyanova R., Hayashi J., Seeger C., Skalka A.M., Katz R.A. Genome-wide analyses of avian sarcoma virus integration sites. J. Virol. 2004;78:11656–11663. doi: 10.1128/JVI.78.21.11656-11663.2004. PubMed DOI PMC

Barr S.D., Leipzig J., Shinn P., Ecker J.R., Bushman F.D. Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J. Virol. 2005;79:12035–12044. doi: 10.1128/JVI.79.18.12035-12044.2005. PubMed DOI PMC

Cherepanov P., Maertens G., Proost P., Devreese B., Van Beeumen J., Engelborghs Y., De Clercq E., Debyser Z. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 2003;278:372–381. doi: 10.1074/jbc.M209278200. PubMed DOI

Ciuffi A., Llano M., Poeschla E., Hoffmann C., Leipzig J., Shinn P., Ecker J.R., Bushman F. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 2005;11:1287–1289. doi: 10.1038/nm1329. PubMed DOI

Vandekerckhove L., Christ F., Van Maele B., De Rijck J., Gijsbers R., Van den Haute C., Witvrouw M., Debyser Z. Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J. Virol. 2006;80:1886–1896. doi: 10.1128/JVI.80.4.1886-1896.2006. PubMed DOI PMC

Marini B., Kertesz-Farkas A., Ali H., Lucic B., Lisek K., Manganaro L., Pongor S., Luzzati R., Recchia A., Mavilio F., et al. Nuclear architecture dictates HIV-1 integration site selection. Nature. 2015;521:227–231. doi: 10.1038/nature14226. PubMed DOI

Sowd G.A., Serrao E., Wang H., Wang W., Fadel H.J., Poeschla E.M., Engelman A.N. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc. Natl. Acad. Sci. USA. 2016;113:1054–1063. doi: 10.1073/pnas.1524213113. PubMed DOI PMC

Rasheedi S., Shun M.C., Serrao E., Sowd G.A., Qian J., Hao C., Dasgupta T., Engelman A.N., Skowronski J. The cleavage and polyadenylation specificity factor 6 (CPSF6) subunit of the capsid-recruited pre-messenger RNA cleavage factor I (CFIm) complex mediates HIV-1 integration into genes. J. Biol. Chem. 2016;291:11809–11819. doi: 10.1074/jbc.M116.721647. PubMed DOI PMC

Sharma A., Larue R.C., Plumb M.R., Malani N., Male F., Slaughter A., Kessl J.J., Shkriabai N., Coward E., Aiyer S.S., et al. BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc. Natl. Acad. Sci. USA. 2013;110:12036–12041. doi: 10.1073/pnas.1307157110. PubMed DOI PMC

Gupta S.S., Maetzig T., Maertens G.N., Sharif A., Rothe M., Weidner-Glunde M., Galla M., Schambach A., Cherepanov P., Schulz T.F. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J. Virol. 2013;87:12721–12736. doi: 10.1128/JVI.01942-13. PubMed DOI PMC

De Rijck J., de Kogel C., Demeulemeester J., Vets S., El Ashkar S., Malani N., Bushman F.D., Landuyt B., Husson S.J., Busschots K., et al. The BET family of proteins targets moloney murine leukemia virus integration near transcription start sites. Cell Rep. 2013;5:886–894. doi: 10.1016/j.celrep.2013.09.040. PubMed DOI PMC

Winans S., Larue R.C., Abraham C.M., Shkriabai N., Skopp A., Winkler D., Kvaratskhelia M., Beemon K.L. The FACT complex promotes avian leukosis virus DNA integration. J. Virol. 2017;91:e00082-17. doi: 10.1128/JVI.00082-17. PubMed DOI PMC

Aiyer S., Swapna G.V., Malani N., Aramini J.M., Schneider W.M., Plumb M.R., Ghanem M., Larue R.C., Sharma A., Studamire B., et al. Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Res. 2014;42:5917–5928. doi: 10.1093/nar/gku175. PubMed DOI PMC

El Ashkar S., De Rijck J., Demeulemeester J., Vets S., Madlala P., Cermakova K., Debyser Z., Gijsbers R. BET-independent MLV-based vectors target away from promoters and regulatory elements. Mol. Ther. Nucleic Acids. 2014;29:e179. doi: 10.1038/mtna.2014.33. PubMed DOI PMC

El Ashkar S., Van Looveren D., Schenk F., Vranckx L.S., Demeulemeester J., De Rijck J., Debyser Z., Modlich U., Gijsbers R. Engineering next-generation BET-independent MLV vectors for safer gene therapy. Mol. Ther. Nucleic Acids. 2017;7:231–245. doi: 10.1016/j.omtn.2017.04.002. PubMed DOI PMC

Hacein-Bey-Abina S., Von Kalle C., Schmidt M., McCormack M.P., Wulffraat N., Leboulch P., Lim A., Osborne C.S., Pawliuk R., Morillon E., et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–419. doi: 10.1126/science.1088547. PubMed DOI

Schrijvers R., De Rijck J., Demeulemeester J., Adachi N., Vets S., Ronen K., Christ F., Bushman F.D., Debyser Z., Gijsbers R. LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog. 2012;8:e1002558. doi: 10.1371/journal.ppat.1002558. PubMed DOI PMC

Jordan A., Bisgrove D., Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 2003;22:1868–1877. doi: 10.1093/emboj/cdg188. PubMed DOI PMC

Jordan A., Defechereux P., Verdin E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 2001;20:1726–1738. doi: 10.1093/emboj/20.7.1726. PubMed DOI PMC

Skupsky R., Burnett J.C., Foley J.E., Schaffer D.V., Arkin A.P. HIV promoter integration site primarily modulates transcriptional burst size rather than frequency. PLoS Comput. Biol. 2010;6:e1000952. doi: 10.1371/journal.pcbi.1000952. PubMed DOI PMC

Lewinski M.K., Bisgrove D., Shinn P., Chen H., Hoffmann C., Hannenhalli S., Verdin E., Berry C.C., Ecker J.R., Bushman F.D. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 2005;79:6610–6619. doi: 10.1128/JVI.79.11.6610-6619.2005. PubMed DOI PMC

Blažková J., Trejbalová K., Gondois-Rey F., Halfon P., Philibert P., Guiguen A., Verdin E., Olive D., Van Lint C., Hejnar J., et al. CpG methylation controls reactivation of HIV from latency. PLoS Pathog. 2009;5:e1000554. doi: 10.1371/journal.ppat.1000554. PubMed DOI PMC

Kauder S.E., Bosque A., Lindqvist A., Planelles V., Verdin E. Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog. 2009;5:e1000495. doi: 10.1371/journal.ppat.1000495. PubMed DOI PMC

Trejbalová K., Kovářová D., Blažková J., Machala L., Jilich D., Weber J., Kučerová D., Vencálek O., Hirsch I., Hejnar J. Development of 5’LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin. Epigenet. 2016;8:e19. doi: 10.1186/s13148-016-0185-6. PubMed DOI PMC

Sherrill-Mix S., Lewinski M.K., Famiglietti M., Bosque A., Malani N., Ocwieja K.E., Berry C.C., Looney D., Shan L., Agosto L.M., et al. HIV latency and integration site placement in five cell-based models. Retrovirology. 2013;10:e90. doi: 10.1186/1742-4690-10-90. PubMed DOI PMC

Vranckx L.S., Demeulemeester J., Saleh S., Boll A., Vansant G., Schrijvers R., Weydert C., Battivelli E., Verdin E., Cereseto A., et al. LEDGIN-mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine. 2016;8:248–264. doi: 10.1016/j.ebiom.2016.04.039. PubMed DOI PMC

Chen H.C., Martinez J.P., Zorita E., Meyerhans A., Filion G.J. Position effects influence HIV latency reversal. Nat. Struct. Mol. Biol. 2017;24:47–54. doi: 10.1038/nsmb.3328. PubMed DOI

Svoboda J., Hejnar J., Geryk J., Elleder D., Vernerová Z. Retroviruses in foreign species and the problem of provirus silencing. Gene. 2000;261:181–188. doi: 10.1016/S0378-1119(00)00481-9. PubMed DOI

Lounková A., Dráberová E., Šenigl F., Trejbalová K., Geryk J., Hejnar J., Svoboda J. Molecular events accompanying rous sarcoma virus rescue from rodent cells and the role of viral gene complementation. J. Virol. 2014;88:3505–3515. doi: 10.1128/JVI.02761-13. PubMed DOI PMC

Hejnar J., Svoboda J., Geryk J., Fincham V.J., Hák R. High rate of morphological reversion in tumor cell line H-19 associated with permanent transcriptional suppression of the LTR, V-SRC, LTR provirus. Cell Growth Differ. 1994;5:277–285. PubMed

Hejnar J., Plachý J., Geryk J., Machon O., Trejbalová K., Guntaka R.V., Svoboda J. Inhibition of the rous sarcoma virus long terminal repeat-driven transcription by in vitro methylation: Different sensitivity in permissive chicken cells versus mammalian cells. Virology. 1999;255:171–181. doi: 10.1006/viro.1998.9597. PubMed DOI

Šenigl F., Auxt M., Hejnar J. Transcriptional provirus silencing as a crosstalk of de novo DNA methylation and epigenomic features at the integration site. Nucleic Acids Res. 2012;40:5298–5312. doi: 10.1093/nar/gks197. PubMed DOI PMC

Šenigl F., Miklík D., Auxt M., Hejnar J. Accumulation of long-term transcriptionally active integrated retroviral vectors in active promoters and enhancers. Nucleic Acids Res. 2017;45:12752–12765. doi: 10.1093/nar/gkx889. PubMed DOI PMC

Šenigl F., Plachý J., Hejnar J. The core element of a CpG island protects avian sarcoma and leukosis virus-derived vectors from transcriptional silencing. J. Virol. 2008;82:7818–7827. doi: 10.1128/JVI.00419-08. PubMed DOI PMC

Kalina J., Šenigl F., Mičáková A., Mucksová J., Blažková J., Yan H., Poplštein M., Hejnar J., Trefil P. Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction. 2007;134:445–453. doi: 10.1530/REP-06-0233. PubMed DOI

Uren A.G., Mikkers H., Kool J., van der Weyden L., Lund A.H., Wilson C.H., Rance R., Jonkers J., van Lohuizen M., Berns A., et al. A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat. Protoc. 2009;4:789–798. doi: 10.1038/nprot.2009.64. PubMed DOI PMC

Berry C.C. Restrsiteutils: Restriction Site Distances and Matched Samples. R Package Version 1.2.8. [(accessed on 28 January 2018)];2017 Available online: http://www.bioconductor.org/packages/2.12/bioc/html/Restrsiteutils.html.

Pagès H., Aboyoun P., Gentleman R., DebRoy S. Biostrings: Efficient Manipulation of Biological Strings. R Package Version 2.46.0. [(accessed on 28 January 2018)];2017 Available online: http://www.bioconductor.org/packages/2.12/bioc/html/Biostrings.html.

Lawrence M., Huber W., Pagès H., Aboyoun P., Carlson M., Gentleman R., Morgan M.T., Carey V.J. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 2013;9:e1003118. doi: 10.1371/journal.pcbi.1003118. PubMed DOI PMC

Ernst J., Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 2010;28:817–825. doi: 10.1038/nbt.1662. PubMed DOI PMC

Ernst J., Kellis M. ChromHMM: Automating chromatin-state discovery and characterization. Nat. Methods. 2012;9:215–216. doi: 10.1038/nmeth.1906. PubMed DOI PMC

Kanamori-Katayama M., Itoh M., Kawaji H., Lassmann T., Katayama S., Kojima M., Bertin N., Kaiho A., Ninomiya N., Daub C.O., et al. Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. 2011;21:1150–1159. doi: 10.1101/gr.115469.110. PubMed DOI PMC

Lusic M., Siliciano R.F. Nuclear landscape of HIV-1 infection and integration. Nat. Rev. Microbiol. 2017;15:69–82. doi: 10.1038/nrmicro.2016.162. PubMed DOI

Hughes S.H., Coffin J.M. What Integration Sites Tell Us about HIV Persistence. Cell Host Microbe. 2016;19:588–598. doi: 10.1016/j.chom.2016.04.010. PubMed DOI PMC

Mok H.P., Lever A.M. Chromatin, gene silencing and HIV latency. Genome Biol. 2007;8:e228. doi: 10.1186/gb-2007-8-11-228. PubMed DOI PMC

LaFave M.C., Varshney G.K., Gildea D.E., Wolfsberg T.G., Baxevanis A.D., Burgess S.M. MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res. 2014;42:4257–4269. doi: 10.1093/nar/gkt1399. PubMed DOI PMC

Malhotra S., Winans S., Lam G., Justice J., Morgan R., Beemon K. Selection for avian leukosis virus integration sites determines the clonal progression of B-cell lymphomas. PLoS Pathog. 2017;13:e1006708. doi: 10.1371/journal.ppat.1006708. PubMed DOI PMC

Justice J.F., Morgan R.W., Beemon K.L. Common Viral Integration Sites Identified in Avian Leukosis Virus-Induced B-Cell Lymphomas. MBio. 2015;6:e01863. doi: 10.1128/mBio.01863-15. PubMed DOI PMC

Pajer P., Pečenka V., Králová J., Karafiát V., Průková D., Zemanová Z., Kodet R., Dvořák M. Identification of potential human oncogenes by mapping the common viral integration sites in avian nephroblastoma. Cancer Res. 2006;66:78–86. doi: 10.1158/0008-5472.CAN-05-1728. PubMed DOI

Plachý J., Kotáb J., Divina P., Reinišová M., Šenigl F., Hejnar J. Proviruses selected for high and stable expression of transduced genes accumulate in broadly transcribed genome areas. J. Virol. 2010;84:4204–4211. doi: 10.1128/JVI.02511-09. PubMed DOI PMC

Weber M., Hellmann I., Stadler M.B., Ramos L., Paabo S., Rebhan M., Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007;39:457–466. doi: 10.1038/ng1990. PubMed DOI

Hodges E., Smith A.D., Kendall J., Xuan Z., Ravi K., Rooks M., Zhang M.Q., Ye K., Bhattacharjee A., Brizuela L., et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res. 2009;19:1593–1605. doi: 10.1101/gr.095190.109. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...