Accumulation of long-term transcriptionally active integrated retroviral vectors in active promoters and enhancers
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
29244184
PubMed Central
PMC5727404
DOI
10.1093/nar/gkx889
PII: 4372481
Knihovny.cz E-zdroje
- MeSH
- Alpharetrovirus genetika MeSH
- buněčné linie MeSH
- buňky K562 MeSH
- CpG ostrůvky genetika MeSH
- epigeneze genetická MeSH
- genetická transkripce * MeSH
- genetické vektory genetika MeSH
- integrace viru genetika MeSH
- lidé MeSH
- promotorové oblasti (genetika) genetika MeSH
- proviry genetika MeSH
- umlčování genů MeSH
- zesilovače transkripce genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Most retroviruses preferentially integrate into certain genomic locations and, as a result, their genome-wide integration patterns are non-random. We investigate the epigenetic landscape of integrated retroviral vectors and correlate it with the long-term stability of proviral transcription. Retroviral vectors derived from the avian sarcoma/leukosis virus expressing the GFP reporter were used to transduce the human myeloid lymphoblastoma cell line K562. Because of efficient silencing of avian retrovirus in mammalian cells, only ∼3% of established clones displayed stable proviral expression. We analyzed the vector integration sites in non-selected cells and in clones selected for the GFP expression. This selection led to overrepresentation of proviruses integrated in active transcription units, with particular accumulation in promoter-proximal areas. In parallel, we investigated the integration of vectors equipped with an anti-silencing CpG island core sequence. Such modification increased the frequency of stably expressing proviruses by one order. The modified vectors are also overrepresented in active transcription units, but stably expressed in distal parts of transcriptional units further away from promoters with marked accumulation in enhancers. These results suggest that integrated retroviruses subject to gradual epigenetic silencing during long-term cultivation. Among most genomic compartments, however, active promoters and enhancers protect the adjacent retroviruses from transcriptional silencing.
Zobrazit více v PubMed
Wu X., Li Y., Crise B., Burgess S.M.. Transcription start regions in the human genome are favored targets for MLV integration. Science. 2003; 300:1749–1751. PubMed
De Ravin S.S., Su L., Theobald N., Choi U., Macpherson J.L., Poidinger M., Symonds G., Pond S.M., Ferris A.L., Hughes S.H. et al. . Enhancers are major targets for murine leukemia virus vector integration. J. Virol. 2014; 88:4504–4513. PubMed PMC
LaFave M.C., Varshney G.K., Gildea D.E., Wolfsberg T.G., Baxevanis A.D., Burgess S.M.. MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res. 2014; 42:4257–4269. PubMed PMC
Hacein-Bey-Abina S., Garrigue A., Wang G.P., Soulier J., Lim A., Morillon E., Clappier E., Caccavelli L., Delabesse E., Beldjord K. et al. . Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 2008; 118:3132–3142. PubMed PMC
De Rijck J., de Kogel C., Demeulemeester J., Vets S., El Ashkar S., Malani N., Bushman F.D., Landuyt B., Husson S.J., Busschots K. et al. . The BET family of proteins targets Moloney murine leukemia virus integration near transcription start sites. Cell Rep. 2013; 5:886–894. PubMed PMC
Aiyer S., Swapna G.V.T., Malani N., Aramini J.M., Schneider W.M., Plumb M.R., Ghanem M., Larue R.C., Sharma A., Studamire B. et al. . Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Res. 2014; 42:5917–5928. PubMed PMC
LeRoy G., Chepelev I., DiMaggio P.A., Blanco M.A., Zee B.M., Zhao K., Garcia B.A.. Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins. Genome Biol. 2012; 13:R68. PubMed PMC
Elleder D, Pavlíček A., Pačes J., Hejnar J.. Preferential integration of human immunodeficiency virus type 1 into genes, cytogenetic R bands and GC-rich DNA regions: insight from the human genome sequence. FEBS Lett. 2002; 517:285–286. PubMed
Schroder A.R., Shinn P., Chen H., Berry C., Ecker J.R., Bushman F.. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002; 110:521–529. PubMed
Wang G.P., Ciuffi A., Leipzig J., Berry C.C., Bushman F.D.. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 2007; 17:1186–1194. PubMed PMC
Cherepanov P., Maertens G., Proost P., Devreese B., Van Beeumen J., Engelborghs Y., De Clercq E., Debyser Z.. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 2003; 278:372–381. PubMed
Cherepanov P., Devroe E., Silver P.A., Engelman A.. Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J. Biol. Chem. 2004; 279:48883–48892. PubMed
Ciuffi A., Llano M., Poeschla E., Hoffmann C., Leipzig J., Shinn P., Ecker J.R., Bushman F.. A role for LEDGF/p75 in targeting HIV DNA integration. Nature Med. 2005; 11:1287–1289. PubMed
Shun M.C., Raghavendra N.K., Vandegraaff N., Daigle J.E., Hughes S., Kellam P., Cherepanov P., Engelman A.. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 2007; 21:1767–1778. PubMed PMC
De Rijck J., Bartholomeeusen K., Ceulemans H., Debyser Z., Gijsbers R.. High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res. 2010; 38:6135–6147. PubMed PMC
Ferris A.L., Wu X., Hughes C.M., Stewart C., Smith S.J., Milne T.A., Wang G.G., Shun M.C., Allis C.D., Engelman A.. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:3135–3140. PubMed PMC
Silvers R.M., Smith J.A., Schowalter M., Litwin S., Liang Z., Geary K., Daniel R.. Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein. Hum. Gene Ther. 2010; 21:337–349. PubMed PMC
Mitchell R.S., Beitzel B.F., Schroder A.R., Shinn P., Chen H., Berry C.C., Ecker J,R, Bushman F.D.. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004; 2:e234. PubMed PMC
Narezkina A., Taganov K.D., Litwin S., Stoyanova R., Hayashi J., Seeger C., Skalka A.M., Katz R.A.. Genome-wide analyses of avian sarcoma virus integration sites. J. Virol. 2004; 78:11656–11663. PubMed PMC
Barr S.D., Leipzig J., Shinn P., Ecker J.R., Bushman F.D.. Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J. Virol. 2005; 79:12035–12044. PubMed PMC
Winans S., Larue R.C., Abraham C.M., Shkriabai N., Skopp A., Winkler D., Kvaratskhelia M., Beemon K.L.. The FACT complex promotes avian leukosis virus DNA integration. J. Virol. 2017; 91:doi:10.1128/JVI.00082-17. PubMed PMC
Faschinger A., Rouault F., Sollner J., Lukas A., Salmons B., Günzburg W.H., Indik S.. Mouse mammary tumor virus integration site selection in human and mouse genomes. J. Virol. 2008; 82:1360–1367. PubMed PMC
Konstantoulas C.J., Indik S.. Mouse mammary tumor virus-based vector transduces non-dividing cells, enters the nucleus via a TNPO3-independent pathway and integrates in a less biased fashion than other retroviruses. Retrovirology. 2014; 11:e34. PubMed PMC
Bailey J.R., Sedaghat A.R., Kieffer T., Brennan T., Lee P.K., Wind-Rotolo M., Haggerty C.M., Kamireddi A.R., Liu Y., Lee J. et al. . Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+T cells. J. Virol. 2006; 80:6441–6457. PubMed PMC
Kearney M.F., Spindler J., Shao W., Yu S., Anderson E.M., O'Shea A., Rehm C., Poethke C., Kovacs N., Mellors J.W. et al. . Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathogens. 2014; 10:e1004010. PubMed PMC
Joos B., Fischer M., Kuster H., Pillai S.K., Wong J.K., Böni J., Hirschel B., Weber R., Trkola A., Günthard H.F. et al. . HIV rebounds from latently infected cells, rather than from continuing low-level replication. Proc. Natl. Acad. Sci. U.S.A. 2008; 105:16725–16730. PubMed PMC
Maldarelli F., Wu X., Su L., Simonetti F.R., Shao W., Hill S., Spindler J., Ferris A.L., Mellors J.W., Kearney M.F. et al. . HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 2014; 345:179–183. PubMed PMC
Wagner T.A., McLaughlin S., Garg K., Cheung C.Y.K., Larsen B.B., Styrchak S., Huang H.C., Edlefsen P.T., Mullins J.I., Frenkel L.M.. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 2014; 345:570–573. PubMed PMC
Cavazzana-Calvo M., Payen E., Negre O., Wang G., Hehir K., Fusil F., Down J., Denaro M., Brady T., Westerman K. et al. . Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010; 467:318–322. PubMed PMC
Plachy J., Kotab J., Divina P., Reinisova M., Senigl F., Hejnar J.. Proviruses selected for high and stable expression of transduced genes accumulate in broadly transcribed genome areas. J. Virol. 2010; 84:4204–4211. PubMed PMC
Senigl F., Auxt M., Hejnar J.. Transcriptional provirus silencing as a crosstalk of de novo DNA methylation and epigenomic features at the integration site. Nucleic Acids Res. 2012; 40:5298–5312. PubMed PMC
Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther. 2005; 16:1241–1246. PubMed
Ellis J., Yao S.. Retrovirus silencing and vector design: relevance to normal and cancer stem cells?. Curr. Gene Ther. 2005; 5:367–373. PubMed
Niwa O., Yokota Y., Ishida H., Sugahara T.. Independent mechanisms involved in suppression of the Moloney leukemia virus genome during differentiation of murine teratocarcinoma cells. Cell. 1983; 32:1105–1113. PubMed
Wang C., Goff S.P.. Differential control of retrovirus silencing in embryonic cells by proteasomal regulation of the ZFP809 retroviral repressor. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:922–930. PubMed PMC
Challita P.M., Skelton D., el-Khoueiry A., Yu X.J., Weinberg K., Kohn D.B.. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J. Virol. 1995; 69:748–755. PubMed PMC
Searle S., Gillespie D.A., Chiswell D.J., Wyke J.A.. Analysis of the variations in proviral cytosine methylation that accompany transformation and morphological reversion in a line of Rous sarcoma virus-infected Rat-1 cells. Nucleic Acids Res. 1984; 12:5193–5210. PubMed PMC
Hejnar J., Svoboda J., Geryk J., Fincham V.J., Hak R.. High rate of morphological reversion in tumor cell line H-19 associated with permanent transcriptional suppression of the LTR, v-src, LTR provirus. Cell Growth Differ. 1994; 5:277–285. PubMed
Svoboda J., Hejnar J., Geryk J., Elleder D., Vernerova Z.. Retroviruses in foreign species and the problem of provirus silencing. Gene. 2000; 261:181–188. PubMed
Poleshko A., Palagin I., Zhang R., Boimel P., Castagna C., Adams P.D., Skalka A.M., Katz R.A.. Identification of cellular proteins that maintain retroviral epigenetic silencing: evidence for an antiviral response. J. Virol. 2008; 82:2313–2323. PubMed PMC
Shalginskikh N., Poleshko A., Skalka A.M., Katz R.A.. Retroviral DNA methylation and epigenetic repression are mediated by the antiviral host protein Daxx. J. Virol. 2013; 87:2137–2150. PubMed PMC
Hejnar J., Plachy J., Geryk J., Machon O., Trejbalova K., Guntaka R.V., Svoboda J.. Inhibition of the Rous sarcoma virus long terminal repeat-driven transcription by in vitro methylation: different sensitivity in permissive chicken cells versus mammalian cells. Virology. 1999; 255:171–181. PubMed
Hejnar J., Hajkova P., Plachy J., Elleder D., Stepanets V., Svoboda J.. CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. Proc. Natl. Acad. Sci. U.S.A. 2001; 98:565–569. PubMed PMC
Senigl F., Plachy J., Hejnar J.. The core element of a CpG island protects avian sarcoma and leukosis virus-derived vectors from transcriptional silencing. J. Virol. 2008; 82:7818–7827. PubMed PMC
Uren A.G., Mikkers H., Kool J., van der Weyden L., Lund A.H., Wilson C.H., Rance R., Jonkers J., van Lohuizen M., Berns A. et al. . A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat. Protoc. 2009; 4:789–798. PubMed PMC
Zhu J., He F., Hu S., Yu J.. On the nature of human housekeeping genes. Trends Genet. 2008; 24:481–484. PubMed
Cattaneo P., Kunderfranco P., Greco C., Guffanti A., Stirparo G.G., Rusconi F., Rizzi R., Di Pasquale E., Locatelli S.L., Latronico M.V. et al. . DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation. Cell Death Differ. 2016; 23:555–564. PubMed PMC
Deshpande A.J., Deshpande A., Sinha A.U., Chen L., Chang J., Cihan A., Fazio M., Chen C.W., Zhu N., Koche R et al. . AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell. 2014; 26:896–908. PubMed PMC
Pekowska A., Benoukraf T., Zacarias-Cabeza J., Belhocine M., Koch F., Holota H., Imbert J., Andrau J.C., Ferrier P., Spicuglia S.. H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 2011; 30:4198–4210. PubMed PMC
Soboleva T.A., Nekrasov M., Pahwa A., Williams R., Huttley G.A., Tremethick D.J.. A unique H2A histone variant occupies the transcriptional start site of active genes. Nat. Struct. Mol. Biol. 2012; 19:1076–1083. PubMed
Ernst J., Kellis M.. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 2010; 28:817–825. PubMed PMC
Ernst J., Kellis M.. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods. 2012; 9:215–216. PubMed PMC
Hoffman M.M., Buske O.J., Wang J., Weng Z., Bilmes J.A., Noble W.S.. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods. 2012; 9:473–476. PubMed PMC
Hoffman M.M., Ernst J., Wilder S.P., Kundaje A., Harris R.S., Libbrecht M., Giardine B., Ellenbogen P.M., Bilmes J.A., Birney E. et al. . Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 2013; 41:827–841. PubMed PMC
Sultana T., Zamborlini A., Cristofari G., Lesage P.. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 2017; 18:292–308. PubMed
Rouzine I.M., Raztoky B.S., Weinberger L.S.. Stochastic variability in HIV affects viral eradication. Proc. Natl. Acad. Sci. U.S.A. 2014; 111:13251–13252. PubMed PMC
Rasmussen T.A., Tolstrup M., Søgaard O.S.. Reversal of latency as part of a cure for HIV-1. Trends Microbiol. 2016; 24:90–97. PubMed
Orphanides G., LeRoy G., Chang C.H., Luse D.S., Reinberg D.. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell. 1998; 92:105–116. PubMed
Suzuki M.M., Bird A.. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 2008; 9:465–476. PubMed
Hejnar J., Elleder D., Hájková P., Walter J., Blažková J., Svoboda J.. Demethylation of host-cell DNA at the site of avian retrovirus integration. Biochem. Biophys. Res. Commun. 2003; 311:641–648. PubMed
Rebollo R., Karimi M.M., Bilenky M., Gagnier L., Miceli-Royer K., Zhang Y., Goyal P., Keane T.M., Jones S., Hirst M. et al. . Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet. 2011; 7:e1002301. PubMed PMC
Rebollo R., Miceli-Rover K., Zhang Y., Farivar S., Gagnier L., Mager D.L.. Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol. 2012; 13:e89. PubMed PMC