Long Terminal Repeats of Gammaretroviruses Retain Stable Expression after Integration Retargeting
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Praemium Academiae Award 2018
Akademie Věd České Republiky
RVO: 68378050-KAV-NPUI
Akademie Věd České Republiky
LX22NPO5103
European Union - Next Generation EU
PubMed
39459853
PubMed Central
PMC11512309
DOI
10.3390/v16101518
PII: v16101518
Knihovny.cz E-zdroje
- Klíčová slova
- epigenetics, expression, integration site, retrovirus, silencing, vectors,
- MeSH
- buněčné linie MeSH
- Gammaretrovirus * genetika MeSH
- genetické vektory genetika MeSH
- integrace viru * MeSH
- koncové repetice * genetika MeSH
- lidé MeSH
- promotorové oblasti (genetika) MeSH
- proviry * genetika MeSH
- regulace exprese virových genů MeSH
- transgeny MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Retroviruses integrate into the genomes of infected host cells to form proviruses, a genetic platform for stable viral gene expression. Epigenetic silencing can, however, hamper proviral transcriptional activity. As gammaretroviruses (γRVs) preferentially integrate into active promoter and enhancer sites, the high transcriptional activity of γRVs can be attributed to this integration preference. In addition, long terminal repeats (LTRs) of some γRVs were shown to act as potent promoters by themselves. Here, we investigate the capacity of different γRV LTRs to drive stable expression within a non-preferred epigenomic environment in the context of diverse retroviral vectors. We demonstrate that different γRV LTRs are either rapidly silenced or remain active for long periods of time with a predominantly active proviral population under normal and retargeted integration. As an alternative to the established γRV systems, the feline leukemia virus and koala retrovirus LTRs are able to drive stable, albeit intensity-diverse, transgene expression. Overall, we show that despite the occurrence of rapid silencing events, most γRV LTRs can drive stable expression outside of their preferred chromatin landscape after retrovirus integrations.
Zobrazit více v PubMed
Jordan A., Defechereux P., Verdin E. The Site of HIV-1 Integration in the Human Genome Determines Basal Transcriptional Activity and Response to Tat Transactivation. EMBO J. 2001;20:1726–1738. doi: 10.1093/emboj/20.7.1726. PubMed DOI PMC
Skupsky R., Burnett J.C., Foley J.E., Schaffer D.V., Arkin A.P. HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size rather than Frequency. PLoS Comput. Biol. 2010;6:e1000952. doi: 10.1371/journal.pcbi.1000952. PubMed DOI PMC
Senigl F., Auxt M., Hejnar J. Transcriptional Provirus Silencing as a Crosstalk of de Novo DNA Methylation and Epigenomic Features at the Integration Site. Nucleic Acids Res. 2012;40:5298–5312. doi: 10.1093/nar/gks197. PubMed DOI PMC
Chen H.-C., Martinez J.P., Zorita E., Meyerhans A., Filion G.J. Position Effects Influence HIV Latency Reversal. Nat. Struct. Mol. Biol. 2017;24:47–54. doi: 10.1038/nsmb.3328. PubMed DOI
Miklík D., Šenigl F., Hejnar J. Proviruses with Long-Term Stable Expression Accumulate in Transcriptionally Active Chromatin close to the Gene Regulatory Elements: Comparison of ASLV-, HIV- and MLV-Derived Vectors. Viruses. 2018;10:116. doi: 10.3390/v10030116. PubMed DOI PMC
Vansant G., Chen H.-C., Zorita E., Trejbalová K., Miklík D., Filion G., Debyser Z. The Chromatin Landscape at the HIV-1 Provirus Integration Site Determines Viral Expression. Nucleic Acids Res. 2020;48:7801–7817. doi: 10.1093/nar/gkaa536. PubMed DOI PMC
Miklík D., Grim J., Elleder D., Hejnar J. Unraveling the Palindromic and Nonpalindromic Motifs of Retroviral Integration Site Sequences by Statistical Mixture Models. Genome Res. 2023;33:1395–1408. doi: 10.1101/gr.277694.123. PubMed DOI PMC
Mitchell R.S., Beitzel B.F., Schroder A.R.W., Shinn P., Chen H., Berry C.C., Ecker J.R., Bushman F.D. Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences. PLoS Biol. 2004;2:E234. doi: 10.1371/journal.pbio.0020234. PubMed DOI PMC
Schröder A.R.W., Shinn P., Chen H., Berry C., Ecker J.R., Bushman F. HIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots. Cell. 2002;110:521–529. doi: 10.1016/S0092-8674(02)00864-4. PubMed DOI
Wu X., Li Y., Crise B., Burgess S.M. Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration. Science. 2003;300:1749–1751. doi: 10.1126/science.1083413. PubMed DOI
Narezkina A., Taganov K.D., Litwin S., Stoyanova R., Hayashi J., Seeger C., Skalka A.M., Katz R.A. Genome-Wide Analyses of Avian Sarcoma Virus Integration Sites. J. Virol. 2004;78:11656–11663. doi: 10.1128/JVI.78.21.11656-11663.2004. PubMed DOI PMC
LaFave M.C., Varshney G.K., Gildea D.E., Wolfsberg T.G., Baxevanis A.D., Burgess S.M. MLV Integration Site Selection Is Driven by Strong Enhancers and Active Promoters. Nucleic Acids Res. 2014;42:4257–4269. doi: 10.1093/nar/gkt1399. PubMed DOI PMC
De Ravin S.S., Su L., Theobald N., Choi U., Macpherson J.L., Poidinger M., Symonds G., Pond S.M., Ferris A.L., Hughes S.H., et al. Enhancers Are Major Targets for Murine Leukemia Virus Vector Integration. J. Virol. 2014;88:4504–4513. doi: 10.1128/JVI.00011-14. PubMed DOI PMC
Elleder D., Pavlícek A., Paces J., Hejnar J. Preferential Integration of Human Immunodeficiency Virus Type 1 into Genes, Cytogenetic R Bands and GC-Rich DNA Regions: Insight from the Human Genome Sequence. FEBS Lett. 2002;517:285–286. doi: 10.1016/S0014-5793(02)02612-1. PubMed DOI
Derse D., Crise B., Li Y., Princler G., Lum N., Stewart C., McGrath C.F., Hughes S.H., Munroe D.J., Wu X. Human T-Cell Leukemia Virus Type 1 Integration Target Sites in the Human Genome: Comparison with Those of Other Retroviruses. J. Virol. 2007;81:6731–6741. doi: 10.1128/JVI.02752-06. PubMed DOI PMC
Burnett J.C., Miller-Jensen K., Shah P.S., Arkin A.P., Schaffer D.V. Control of Stochastic Gene Expression by Host Factors at the HIV Promoter. PLoS Pathog. 2009;5:e1000260. doi: 10.1371/journal.ppat.1000260. PubMed DOI PMC
Weinberger L.S., Burnett J.C., Toettcher J.E., Arkin A.P., Schaffer D.V. Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity. Cell. 2005;122:169–182. doi: 10.1016/j.cell.2005.06.006. PubMed DOI
Miller-Jensen K., Skupsky R., Shah P.S., Arkin A.P., Schaffer D.V. Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression. PLoS Comput. Biol. 2013;9:e1003135. doi: 10.1371/journal.pcbi.1003135. PubMed DOI PMC
Hejnar J., Svoboda J., Geryk J., Fincham V.J., Hák R. High Rate of Morphological Reversion in Tumor Cell Line H-19 Associated with Permanent Transcriptional Suppression of the LTR, v-Src, LTR Provirus. Cell Growth Differ. 1994;5:277–285. PubMed
Šenigl F., Miklík D., Auxt M., Hejnar J. Accumulation of Long-Term Transcriptionally Active Integrated Retroviral Vectors in Active Promoters and Enhancers. Nucleic Acids Res. 2017;45:12752–12765. doi: 10.1093/nar/gkx889. PubMed DOI PMC
Vranckx L.S., Demeulemeester J., Saleh S., Boll A., Vansant G., Schrijvers R., Weydert C., Battivelli E., Verdin E., Cereseto A., et al. LEDGIN-Mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine. 2016;8:248–264. doi: 10.1016/j.ebiom.2016.04.039. PubMed DOI PMC
Battivelli E., Dahabieh M.S., Abdel-Mohsen M., Svensson J.P., Tojal Da Silva I., Cohn L.B., Gramatica A., Deeks S., Greene W.C., Pillai S.K., et al. Distinct Chromatin Functional States Correlate with HIV Latency Reactivation in Infected Primary CD4 T Cells. Elife. 2018;7:e34655. doi: 10.7554/eLife.34655. PubMed DOI PMC
De Rijck J., de Kogel C., Demeulemeester J., Vets S., El Ashkar S., Malani N., Bushman F.D., Landuyt B., Husson S.J., Busschots K., et al. The BET Family of Proteins Targets Moloney Murine Leukemia Virus Integration near Transcription Start Sites. Cell Rep. 2013;5:886–894. doi: 10.1016/j.celrep.2013.09.040. PubMed DOI PMC
Sharma A., Larue R.C., Plumb M.R., Malani N., Male F., Slaughter A., Kessl J.J., Shkriabai N., Coward E., Aiyer S.S., et al. BET Proteins Promote Efficient Murine Leukemia Virus Integration at Transcription Start Sites. Proc. Natl. Acad. Sci. USA. 2013;110:12036–12041. doi: 10.1073/pnas.1307157110. PubMed DOI PMC
Gupta S.S., Maetzig T., Maertens G.N., Sharif A., Rothe M., Weidner-Glunde M., Galla M., Schambach A., Cherepanov P., Schulz T.F. Bromo- and Extraterminal Domain Chromatin Regulators Serve as Cofactors for Murine Leukemia Virus Integration. J. Virol. 2013;87:12721–12736. doi: 10.1128/JVI.01942-13. PubMed DOI PMC
Aiyer S., Swapna G.V.T., Malani N., Aramini J.M., Schneider W.M., Plumb M.R., Ghanem M., Larue R.C., Sharma A., Studamire B., et al. Altering Murine Leukemia Virus Integration through Disruption of the Integrase and BET Protein Family Interaction. Nucleic Acids Res. 2014;42:5917–5928. doi: 10.1093/nar/gku175. PubMed DOI PMC
El Ashkar S., De Rijck J., Demeulemeester J., Vets S., Madlala P., Cermakova K., Debyser Z., Gijsbers R. BET-Independent MLV-Based Vectors Target Away From Promoters and Regulatory Elements. Mol. Ther. Nucleic Acids. 2014;3:e179. doi: 10.1038/mtna.2014.33. PubMed DOI PMC
El Ashkar S., Van Looveren D., Schenk F., Vranckx L.S., Demeulemeester J., De Rijck J., Debyser Z., Modlich U., Gijsbers R. Engineering Next-Generation BET-Independent MLV Vectors for Safer Gene Therapy. Mol. Ther. Nucleic Acids. 2017;7:231–245. doi: 10.1016/j.omtn.2017.04.002. PubMed DOI PMC
Van Looveren D., Giacomazzi G., Thiry I., Sampaolesi M., Gijsbers R. Improved Functionality and Potency of next Generation BinMLV Viral Vectors toward Safer Gene Therapy. Mol. Ther. Methods Clin. Dev. 2021;23:51–67. doi: 10.1016/j.omtm.2021.07.003. PubMed DOI PMC
Xu L., Yee J.K., Wolff J.A., Friedmann T. Factors Affecting Long-Term Stability of Moloney Murine Leukemia Virus-Based Vectors. Virology. 1989;171:331–341. doi: 10.1016/0042-6822(89)90600-4. PubMed DOI
Lorincz M.C., Schübeler D., Goeke S.C., Walters M., Groudine M., Martin D.I. Dynamic Analysis of Proviral Induction and De Novo Methylation: Implications for a Histone Deacetylase-Independent, Methylation Density-Dependent Mechanism of Transcriptional Repression. Mol. Cell. Biol. 2000;20:842–850. doi: 10.1128/MCB.20.3.842-850.2000. PubMed DOI PMC
Zhu Y., Wang G.Z., Cingöz O., Goff S.P. NP220 Mediates Silencing of Unintegrated Retroviral DNA. Nature. 2018;564:278–282. doi: 10.1038/s41586-018-0750-6. PubMed DOI PMC
Baum C., Hegewisch-Becker S., Eckert H.G., Stocking C., Ostertag W. Novel Retroviral Vectors for Efficient Expression of the Multidrug Resistance (mdr-1) Gene in Early Hematopoietic Cells. J. Virol. 1995;69:7541–7547. doi: 10.1128/jvi.69.12.7541-7547.1995. PubMed DOI PMC
Schambach A., Bohne J., Chandra S., Will E., Margison G.P., Williams D.A., Baum C. Equal Potency of Gammaretroviral and Lentiviral SIN Vectors for Expression of O6-Methylguanine-DNA Methyltransferase in Hematopoietic Cells. Mol. Ther. 2006;13:391–400. doi: 10.1016/j.ymthe.2005.08.012. PubMed DOI
Thornhill S.I., Schambach A., Howe S.J., Ulaganathan M., Grassman E., Williams D., Schiedlmeier B., Sebire N.J., Gaspar H.B., Kinnon C., et al. Self-Inactivating Gammaretroviral Vectors for Gene Therapy of X-Linked Severe Combined Immunodeficiency. Mol. Ther. 2008;16:590–598. doi: 10.1038/sj.mt.6300393. PubMed DOI PMC
Suerth J.D., Maetzig T., Galla M., Baum C., Schambach A. Self-Inactivating Alpharetroviral Vectors with a Split-Packaging Design. J. Virol. 2010;84:6626–6635. doi: 10.1128/JVI.00182-10. PubMed DOI PMC
Warlich E., Kuehle J., Cantz T., Brugman M.H., Maetzig T., Galla M., Filipczyk A.A., Halle S., Klump H., Schöler H.R., et al. Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming. Mol. Ther. 2011;19:782–789. doi: 10.1038/mt.2010.314. PubMed DOI PMC
Huston M.W., van Til N.P., Visser T.P., Arshad S., Brugman M.H., Cattoglio C., Nowrouzi A., Li Y., Schambach A., Schmidt M., et al. Correction of Murine SCID-X1 by Lentiviral Gene Therapy Using a Codon-Optimized IL2RG Gene and Minimal Pretransplant Conditioning. Mol. Ther. 2011;19:1867–1877. doi: 10.1038/mt.2011.127. PubMed DOI PMC
Suerth J.D., Maetzig T., Brugman M.H., Heinz N., Appelt J.-U., Kaufmann K.B., Schmidt M., Grez M., Modlich U., Baum C., et al. Alpharetroviral Self-Inactivating Vectors: Long-Term Transgene Expression in Murine Hematopoietic Cells and Low Genotoxicity. Mol. Ther. 2012;20:1022–1032. doi: 10.1038/mt.2011.309. PubMed DOI PMC
Hoffmann D., Schott J.W., Geis F.K., Lange L., Müller F.-J., Lenz D., Zychlinski D., Steinemann D., Morgan M., Moritz T., et al. Detailed Comparison of Retroviral Vectors and Promoter Configurations for Stable and High Transgene Expression in Human Induced Pluripotent Stem Cells. Gene Ther. 2017;24:298–307. doi: 10.1038/gt.2017.20. PubMed DOI
Modlich U., Navarro S., Zychlinski D., Maetzig T., Knoess S., Brugman M.H., Schambach A., Charrier S., Galy A., Thrasher A.J., et al. Insertional Transformation of Hematopoietic Cells by Self-Inactivating Lentiviral and Gammaretroviral Vectors. Mol. Ther. 2009;17:1919–1928. doi: 10.1038/mt.2009.179. PubMed DOI PMC
Zychlinski D., Schambach A., Modlich U., Maetzig T., Meyer J., Grassman E., Mishra A., Baum C. Physiological Promoters Reduce the Genotoxic Risk of Integrating Gene Vectors. Mol. Ther. 2008;16:718–725. doi: 10.1038/mt.2008.5. PubMed DOI
Kalina J., Senigl F., Micáková A., Mucksová J., Blazková J., Yan H., Poplstein M., Hejnar J., Trefil P. Retrovirus-Mediated in Vitro Gene Transfer into Chicken Male Germ Line Cells. J. Reprod. Fertil. 2007;134:445–453. doi: 10.1530/REP-06-0233. PubMed DOI
Fábryová H., Hron T., Kabíčková H., Poss M., Elleder D. Induction and Characterization of a Replication Competent Cervid Endogenous Gammaretrovirus (CrERV) from Mule Deer Cells. Virology. 2015;485:96–103. doi: 10.1016/j.virol.2015.07.003. PubMed DOI
Chen H., Bechtel M.K., Shi Y., Phipps A., Mathes L.E., Hayes K.A., Roy-Burman P. Pathogenicity Induced by Feline Leukemia Virus, Rickard Strain, Subgroup A Plasmid DNA (pFRA) J. Virol. 1998;72:7048–7056. doi: 10.1128/JVI.72.9.7048-7056.1998. PubMed DOI PMC
Shimotohno K., Mizutani S., Temin H.M. Sequence of Retrovirus Provirus Resembles that of Bacterial Transposable Elements. Nature. 1980;285:550–554. doi: 10.1038/285550a0. PubMed DOI
Hanger J.J., Bromham L.D., McKee J.J., O’Brien T.M., Robinson W.F. The Nucleotide Sequence of Koala (Phascolarctos Cinereus) Retrovirus: A Novel Type C Endogenous Virus Related to Gibbon Ape Leukemia Virus. J. Virol. 2000;74:4264–4272. doi: 10.1128/JVI.74.9.4264-4272.2000. PubMed DOI PMC
Hron T., Fabryova H., Elleder D. Insight into the Epigenetic Landscape of a Currently Endogenizing Gammaretrovirus in Mule Deer (Odocoileus Hemionus) Genomics. 2020;112:886–896. doi: 10.1016/j.ygeno.2019.06.003. PubMed DOI
Martin M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Langmead B., Salzberg S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M., et al. Twelve Years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Quinlan A.R., Hall I.M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Ernst J., Kellis M. Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome. Nat. Biotechnol. 2010;28:817–825. doi: 10.1038/nbt.1662. PubMed DOI PMC
Rao S.S.P., Huntley M.H., Durand N.C., Stamenova E.K., Bochkov I.D., Robinson J.T., Sanborn A.L., Machol I., Omer A.D., Lander E.S., et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014;159:1665–1680. doi: 10.1016/j.cell.2014.11.021. PubMed DOI PMC
Dekker J., Belmont A.S., Guttman M., Leshyk V.O., Lis J.T., Lomvardas S., Mirny L.A., O’Shea C.C., Park P.J., Ren B., et al. The 4D Nucleome Project. Nature. 2017;549:219–226. doi: 10.1038/nature23884. PubMed DOI PMC
Reiff S.B., Schroeder A.J., Kırlı K., Cosolo A., Bakker C., Mercado L., Lee S., Veit A.D., Balashov A.K., Vitzthum C., et al. The 4D Nucleome Data Portal as a Resource for Searching and Visualizing Curated Nucleomics Data. Nat. Commun. 2022;13:2365. doi: 10.1038/s41467-022-29697-4. PubMed DOI PMC
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; Berlin/Heidelberg, Germany: 2016.
Lötsch J., Ultsch A. A Non-Parametric Effect-Size Measure Capturing Changes in Central Tendency and Data Distribution Shape. PLoS ONE. 2020;15:e0239623. doi: 10.1371/journal.pone.0239623. PubMed DOI PMC
Butsch M., Hull S., Wang Y., Roberts T.M., Boris-Lawrie K. The 5′ RNA Terminus of Spleen Necrosis Virus Contains a Novel Posttranscriptional Control Element That Facilitates Human Immunodeficiency Virus Rev/RRE-Independent Gag Production. J. Virol. 1999;73:4847–4855. doi: 10.1128/JVI.73.6.4847-4855.1999. PubMed DOI PMC
Roberts T.M., Boris-Lawrie K. The 5′ RNA Terminus of Spleen Necrosis Virus Stimulates Translation of Nonviral mRNA. J. Virol. 2000;74:8111–8118. doi: 10.1128/JVI.74.17.8111-8118.2000. PubMed DOI PMC
Roberts T.M., Boris-Lawrie K. Primary Sequence and Secondary Structure Motifs in Spleen Necrosis Virus RU5 Confer Translational Utilization of Unspliced Human Immunodeficiency Virus Type 1 Reporter RNA. J. Virol. 2003;77:11973–11984. doi: 10.1128/JVI.77.22.11973-11984.2003. PubMed DOI PMC