The chromatin landscape at the HIV-1 provirus integration site determines viral expression
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32597987
PubMed Central
PMC7641320
DOI
10.1093/nar/gkaa536
PII: 5864711
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- chromatin metabolismus MeSH
- histony metabolismus MeSH
- HIV-1 účinky léků genetika metabolismus MeSH
- inhibitory HIV-integrasy farmakologie MeSH
- integrace viru * účinky léků MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- proviry genetika MeSH
- regulace exprese virových genů * účinky léků MeSH
- RNA virová metabolismus MeSH
- umlčování genů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- histony MeSH
- inhibitory HIV-integrasy MeSH
- lens epithelium-derived growth factor MeSH Prohlížeč
- mezibuněčné signální peptidy a proteiny MeSH
- RNA virová MeSH
HIV-1 persists lifelong in memory cells of the immune system as latent provirus that rebounds upon treatment interruption. Therefore, the latent reservoir is the main target for an HIV cure. Here, we studied the direct link between integration site and transcription using LEDGINs and Barcoded HIV-ensembles (B-HIVE). LEDGINs are antivirals that inhibit the interaction between HIV-1 integrase and the chromatin-tethering factor LEDGF/p75. They were used as a tool to retarget integration, while the effect on HIV expression was measured with B-HIVE. B-HIVE tracks insert-specific HIV expression by tagging a unique barcode in the HIV genome. We confirmed that LEDGINs retarget integration out of gene-dense and actively transcribed regions. The distance to H3K36me3, the marker recognized by LEDGF/p75, clearly increased. LEDGIN treatment reduced viral RNA expression and increased the proportion of silent provirus. Finally, silent proviruses obtained after LEDGIN treatment were located further away from epigenetic marks associated with active transcription. Interestingly, proximity to enhancers stimulated transcription irrespective of LEDGIN treatment, while the distance to H3K36me3 only changed after treatment with LEDGINs. The fact that proximity to these markers are associated with RNA expression support the direct link between provirus integration site and viral expression.
Zobrazit více v PubMed
Finzi D., Hermankova M., Pierson T., Carruth L.M., Buck C., Chaisson R.E., Quinn T.C., Chadwick K., Margolick J., Brookmeyer R. et al. .. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997; 278:1295–1300. PubMed
Finzi D., Blankson J., Siliciano J.D., Margolick J.B., Chadwick K., Pierson T., Smith K., Lisziewicz J., Lori F., Flexner C. et al. .. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 1999; 5:512. PubMed
Chomont N., El-Far M., Ancuta P., Trautmann L., Procopio F.A., Yassine-Diab B., Boucher G., Boulassel M.-R., Ghattas G., Brenchley J.M. et al. .. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 2009; 15:893. PubMed PMC
Chun T.-W., Stuyver L., Mizell S.B., Ehler L.A., Mican J.A.M., Baseler M., Lloyd A.L., Nowak M.A., Fauci A.S.. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:13193–13197. PubMed PMC
Chun T.-W., Carruth L., Finzi D., Shen X., DiGiuseppe J.A., Taylor H., Hermankova M., Chadwick K., Margolick J., Quinn T.C. et al. .. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997; 387:183–188. PubMed
Deeks S.G., Lewin S.R., Ross A.L., Ananworanich J., Benkirane M., Cannon P., Chomont N., Douek D., Lifson J.D., Lo Y.-R. et al. .. International AIDS society global scientific strategy: towards an HIV cure 2016. Nat. Med. 2016; 22:839. PubMed PMC
Darcis G., Van Driessche B., Van Lint C.. HIV latency: should we shock or lock?. Trends Immunol. 2017; 38:217–228. PubMed
Nguyen K., Das B., Dobrowolski C., Karn J.. Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. MBio. 2017; 8:e00133-17. PubMed PMC
Gallastegui E., Millán-Zambrano G., Terme J.-M., Chávez S., Jordan A.. Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J. Virol. 2011; 85:3187–3202. PubMed PMC
Pearson R., Kim Y.K., Hokello J., Lassen K., Friedman J., Tyagi M., Karn J.. Epigenetic silencing of Human Immunodeficiency Virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J. Virol. 2008; 82:12291–12303. PubMed PMC
Matsuda Y., Kobayashi-Ishihara M., Fujikawa D., Ishida T., Watanabe T., Yamagishi M.. Epigenetic heterogeneity in HIV-1 latency establishment. Sci. Rep. 2015; 5:7701. PubMed PMC
Tyagi M., Pearson R.J., Karn J.. Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J. Virol. 2010; 84:6425–6437. PubMed PMC
Battivelli E., Dahabieh M.S., Abdel-Mohsen M., Svensson J.P., Tojal Da Silva I., Cohn L.B., Gramatica A., Deeks S., Greene W.C., Pillai S.K. et al. .. Chromatin functional states correlate with HIV latency reversal in infected primary CD4+ T cells. Elife. 2018; 7:e34655. PubMed PMC
Trejbalová K., Kovářová D., Blažková J., Machala L., Jilich D., Weber J., Kučerová D., Vencálek O., Hirsch I., Hejnar J.. Development of 5′ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin. Epigenet. 2016; 8:19. PubMed PMC
Blazkova J., Trejbalova K., Gondois-Rey F., Halfon P., Philibert P., Guiguen A., Verdin E., Olive D., Van Lint C., Hejnar J. et al. .. CpG methylation controls reactivation of HIV from latency. PLoS Pathog. 2009; 5:e1000554. PubMed PMC
Jordan A., Defechereux P., Verdin E.. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 2001; 20:1726–1738. PubMed PMC
Lewinski M.K., Bisgrove D., Shinn P., Chen H., Hoffmann C., Hannenhalli S., Verdin E., Berry C.C., Ecker J.R., Bushman F.D.. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 2005; 79:6610–6619. PubMed PMC
Brady T., Agosto L.M., Malani N., Berry C.C., O’Doherty U., Bushman F.. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS. 2009; 23:1461–1471. PubMed PMC
Han Y., Lin Y.B., An W., Xu J., Yang H.-C., O’Connell K., Dordai D., Boeke J.D., Siliciano J.D., Siliciano R.F.. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional read through. Cell Host Microbe. 2008; 4:134–146. PubMed PMC
Shan L., Yang H.C., Rabi S.A., Bravo H.C., Shroff N.S., Irizarry R.A.. Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J. Virol. 2011; 85:5384–5393. PubMed PMC
Einkauf K.B., Lee G.Q., Gao C., Sharaf R., Sun X., Hua S., Chen S.M. Y., Jiang C., Lian X., Chowdhury F.Z. et al. .. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J. Clin. Invest. 2019; 129:988–998. PubMed PMC
Cherepanov P., Maertens G., Proost P., Devreese B., Van Beeumen J., Engelborghs Y., De Clercq E., Debyser Z.. HIV-1 integrase forms stable tetramers and associates with LEDGF/P75 protein in human cells. J. Biol. Chem. 2003; 278:372–381. PubMed
Lesbats P., Engelman A.N., Cherepanov P. Retroviral DNA integration. Chem. Rev. 2016; 116:12730–12757. PubMed PMC
Schroder A.R., Shinn P., Chen H., Berry C., Ecker J.R., Bushman F.. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002; 110:521–529. PubMed
Shun M.-C., Raghavendra N.K., Vandegraaff N., Daigle J.E., Hughes S., Kellam P., Cherepanov P., Engelman A.. LEDGF/P75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 2007; 21:1767–1778. PubMed PMC
Cherepanov P., Ambrosio A.L.B., Rahman S., Ellenberger T., Engelman A.. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator P75. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:17308–17313. PubMed PMC
Eidahl J.O., Crowe B.L., North J.A., McKee C.J., Shkriabai N., Feng L., Plumb M., Graham R.L., Gorelick R.J., Hess S. et al. .. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res. 2013; 41:3924–3936. PubMed PMC
Pradeepa M.M., Sutherland H.G., Ule J., Grimes G.R., Bickmore W.A.. Psip1/Ledgf P52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet. 2012; 8:e1002717. PubMed PMC
van Nuland R., van Schaik F.M., Simonis M., van Heesch S., Cuppen E., Boelens R., Timmers H.M., van Ingen H.. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenet. Chromatin. 2013; 6:12. PubMed PMC
Ciuffi A., Llano M., Poeschla E., Hoffmann C., Leipzig J., Shinn P., Ecker J.R., Bushman F.. A role for LEDGF/P75 in targeting HIV DNA integration. Nat. Med. 2005; 11:1287. PubMed
Vranckx L.S., Demeulemeester J., Saleh S., Boll A., Vansant G., Schrijvers R., Weydert C., Battivelli E., Verdin E., Cereseto A. et al. .. LEDGIN-mediated inhibition of Integrase–LEDGF/P75 interaction reduces reactivation of residual latent HIV. EBioMedicine. 2016; 8:248–264. PubMed PMC
Christ F., Voet A., Marchand A., Nicolet S., Desimmie B.A., Marchand D., Bardiot D., Van der Veken N.J., Van Remoortel B., Strelkov S.V. et al. .. Rational design of Small-molecule inhibitors of the LEDGF/P75-integrase interaction and HIV replication. Nat. Chem. Biol. 2010; 6:442–448. PubMed
Christ F., Shaw S., Demeulemeester J., Desimmie B.A., Marchand A., Butler S., Smets W., Chaltin P., Westby M., Debyser Z. et al. .. Small-molecule inhibitors of the LEDGF/P75 binding site of integrase block HIV replication and modulate integrase multimerization. Antimicrob. Agents Chemother. 2012; 56:4365–4374. PubMed PMC
Demeulemeester J., Chaltin P., Marchand A., De Maeyer M., Debyser Z., Christ F.. LEDGINs, non-catalytic site inhibitors of HIV-1 Integrase: a patent review (2006 – 2014). Expert Opin. Ther. Pat. 2014; 24:609–632. PubMed
Al-Mawsawi L.Q., Neamati N.. Allosteric inhibitor development targeting HIV-1 integrase. ChemMedChem. 2011; 6:228–241. PubMed PMC
Tsiang M., Jones G.S., Niedziela-Majka A., Kan E., Lansdon E.B., Huang W., Hung M., Samuel D., Novikov N., Xu Y. et al. .. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J. Biol. Chem. 2012; 287:21189–21203. PubMed PMC
Kessl J.J., Jena N., Koh Y., Taskent-Sezgin H., Slaughter A., Feng L., de Silva S., Wu L., Le Grice S.F.J., Engelman A. et al. .. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J. Biol. Chem. 2012; 287:16801–16811. PubMed PMC
Cherepanov P., Sun Z.-Y.J., Rahman S., Maertens G., Wagner G., Engelman A.. Solution structure of the HIV-1 integrase-binding domain in LEDGF/P75. Nat. Struct. Mol. Biol. 2005; 12:526. PubMed
Desimmie B.A., Schrijvers R., Demeulemeester J., Borrenberghs D., Weydert C., Thys W., Vets S., Van Remoortel B., Hofkens J., De Rijck J. et al. .. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology. 2013; 10:57. PubMed PMC
Jurado K.A., Wang H., Slaughter A., Feng L., Kessl J.J., Koh Y., Wang W., Ballandras-Colas A., Patel P.A., Fuchs J.R. et al. .. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:8690–8695. PubMed PMC
Balakrishnan M., Yant S.R., Tsai L., O’Sullivan C., Bam R.A., Tsai A., Niedziela-Majka A., Stray K.M., Sakowicz R., Cihlar T.. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One. 2013; 8:e74163. PubMed PMC
Le Rouzic E., Bonnard D., Chasset S., Bruneau J.-M., Chevreuil F., Le Strat F., Nguyen J., Beauvoir R., Amadori C., Brias J. et al. .. Dual inhibition of HIV-1 replication by Integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology. 2013; 10:144. PubMed PMC
Chen H.-C., Martinez J.P., Zorita E., Meyerhans A., Filion G.J. Position effects influence HIV latency reversal. Nat. Struct. Mol. Biol. 2017; 24:47–54. PubMed
Miklík D., Šenigl F., Hejnar J.. Proviruses with long-term stable expression accumulate in transcriptionally active chromatin close to the gene regulatory elements: comparison of ASLV-, HIV- and MLV-derived VECTORS. Viruses. 2018; 10:116. PubMed PMC
Chen H.-C., Zorita E., Filion G.J.. Using barcoded HIV ensembles (B-HIVE) for single provirus transcriptomics. Curr. Protoc. Mol. Biol. 2018; 122:e56. PubMed
Ablashi D.V, Berneman Z.N., Kramarsky B., Whitman J., Asano Y., Pearson G.R.. Human Herpesvirus-7 (HHV-7): current status. Clin. Diagn. Virol. 1995; 4:1–13. PubMed
Vincent-Lacaze N., Snyder R.O., Gluzman R., Bohl D., Lagarde C., Danos O.. Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle. J. Virol. 1999; 73:1949–1955. PubMed PMC
Vansant G., Vranckx L.S., Zurnic I., Van Looveren D., Van de Velde P., Nobles C., Gijsbers R., Christ F., Debyser Z.. Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology. 2019; 16:8. PubMed PMC
Zhang L., Lewin S.R., Markowitz M., Lin H.H., Skulsky E., Karanicolas R.. Measuring recent thymic emigrants in blood of normal and HIV-1-infected individuals before and after effective therapy. J. Exp. Med. 1999; 190:725–732. PubMed PMC
Yu G., Wang L.-G., Han Y., He Q.-Y.. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi. A J. Integr. Biol. 2012; 16:284–287. PubMed PMC
Rosenthal R., Rubin D.B.. Ensemble-adjusted P values. Psychol. Bull. 1983; 94:540–541.
Wright S.P. Adjusted P-values for simultaneous inference. Biometrics. 1992; 48:1005–1013.
Benjamini Y., Hochberg Y.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995; 57:289–300.
Cuscó P., Filion G.J.. Zerone: a ChIP-Seq discretizer for multiple replicates with built-in quality control. Bioinformatics. 2016; 32:2896–2902. PubMed PMC
Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-Seq quantification. Nat. Biotechnol. 2016; 34:525–527. PubMed
Reeder J.E., Kwak Y.-T., McNamara R.P., Forst C.V., D’Orso I.. HIV Tat controls RNA polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. Elife. 2015; 4:e08955. PubMed PMC
Orlando D.A., Chen M.W., Brown V.E., Solanki S., Choi Y.J., Olson E.R., Fritz C.C., Bradner J.E., Guenther M.G.. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep. 2014; 9:1163–1170. PubMed
Mansour M.R., Abraham B.J., Anders L., Berezovskaya A., Gutierrez A., Durbin A.D., Etchin J., Lawton L., Sallan S.E., Silverman L.B. et al. .. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014; 346:1373–1377. PubMed PMC
Hollenhorst P.C., Chandler K.J., Poulsen R.L., Johnson W.E., Speck N.A., Graves B.J.. DNA specificity determinants associate with distinct transcription factor functions. PLoS Genet. 2009; 5:e1000778. PubMed PMC
Wang G.P., Ciuffi A., Leipzig J., Berry C.C., Bushman F.D. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 2007; 17:1186–1194. PubMed PMC
Kanehisa M., Goto S.. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28:27–30. PubMed PMC
Kanehisa M., Sato Y., Furumichi M., Morishima K., Tanabe M.. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2018; 47:D590–D595. PubMed PMC
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019; 28:1947–1951. PubMed PMC
Bannister A.J., Schneider R., Myers F.A., Thorne A.W., Crane-Robinson C., Kouzarides T.. Spatial distribution of Di- and Tri-Methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 2005; 280:17732–17736. PubMed
Wu H., Zeng H., Lam R., Tempel W., Amaya M.F., Xu C., Dombrovski L., Qiu W., Wang Y., Min J.. Structural and histone binding ability characterizations of human PWWP domains. PLoS One. 2011; 6:e18919. PubMed PMC
Schrijvers R., Vets S., De Rijck J., Malani N., Bushman F.D., Debyser Z., Gijsbers R.. HRP-2 determines HIV-1 integration site selection in LEDGF/P75 depleted cells. Retrovirology. 2012; 9:84. PubMed PMC
Schrijvers R., De Rijck J., Demeulemeester J., Adachi N., Vets S., Ronen K., Christ F., Bushman F.D., Debyser Z., Gijsbers R.. LEDGF/P75-Independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog. 2012; 8:e1002558. PubMed PMC
Zentner G.E., Tesar P.J., Scacheri P.C.. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 2011; 21:1273–1283. PubMed PMC
Mellor J., Dudek P., Clynes D.. A glimpse into the epigenetic landscape of gene regulation. Curr. Opin. Genet. Dev. 2008; 18:116–122. PubMed
Pott S., Lieb J.D.. What are super-enhancers?. Nat. Genet. 2014; 47:8. PubMed
Delannoy A., Poirier M., Bell B. Cat and Mouse: HIV transcription in latency, immune evasion and cure/remission strategies. Viruses. 2019; 11:269. PubMed PMC
Schwartz C., Bouchat S., Marban C., Gautier V., Van Lint C., Rohr O., Le Douce V.. On the way to find a cure: purging latent HIV-1 reservoirs. Biochem. Pharmacol. 2017; 146:10–22. PubMed
Kim Y., Anderson J.L., Lewin S.R.. Getting the “Kill” into “Shock and Kill”: Strategies to eliminate latent HIV. Cell Host Microbe. 2018; 23:14–26. PubMed PMC
Abner E., Jordan A.. HIV “Shock and Kill” therapy: in need of revision. Antiviral Res. 2019; 166:19–34. PubMed
Bullen C.K., Laird G.M., Durand C.M., Siliciano J.D., Siliciano R.F.. Novel Ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 2014; 20:425–429. PubMed PMC
Ho Y.C., Shan L., Hosmane N.N., Wang J., Laskey S.B., Rosenbloom D.I.. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013; 155:540–551. PubMed PMC
Mousseau G., Mediouni S., Valente S.T.. Targeting HIV transcription: the quest for a functional cure. Curr. Top. Microbiol. Immunol. 2015; 389:121–145. PubMed PMC
Mousseau G., Kessing C.F., Fromentin R., Trautmann L., Chomont N., Valente S.T.. The tat inhibitor didehydro-cortistatin a prevents HIV-1 reactivation from latency. MBio. 2015; 6:e00465-15. PubMed PMC
Kessing C.F., Nixon C.C., Li C., Tsai P.M., Takata H., Mousseau G., Ho P.T., Honeycutt J.B., Fallahi M., Trautmann L. et al. .. In vivo suppression of HIV rebound by didehydro-cortistatin A, a “Block-and-Lock” strategy for HIV-1 cure. Cell Rep. 2017; 21:600–611. PubMed PMC
Debyser Z., Vansant G., Bruggemans A., Janssens J., Christ F.. Insight in HIV integration site selection provides a block-and-lock strategy for a functional cure of HIV infection. Viruses. 2018; 11:12. PubMed PMC
Wang Z., Zang C., Rosenfeld J.A., Schones D.E., Barski A., Cuddapah S., Cui K., Roh T.-Y., Peng W., Zhang M.Q. et al. .. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 2008; 40:897–903. PubMed PMC
Huff J.T., Plocik A.M., Guthrie C., Yamamoto K.R.. Reciprocal intronic and exonic histone modification regions in humans. Nat. Struct. Mol. Biol. 2010; 17:1495. PubMed PMC
Farooq Z., Banday S., Pandita T.K., Altaf M.. The many faces of histone H3K79 methylation. Mutat. Res. Rev. Mutat. Res. 2016; 768:46–52. PubMed PMC
Creyghton M.P., Cheng A.W., Welstead G.G., Kooistra T., Carey B.W., Steine E.J., Hanna J., Lodato M.A., Frampton G.M., Sharp P.A. et al. .. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:21931–21936. PubMed PMC
Lee K., Ambrose Z., Martin T.D., Oztop I., Mulky A., Julias J.G., Vandegraaff N., Baumann J.G., Wang R., Yuen W. et al. .. Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe. 2010; 7:221–233. PubMed PMC
Demeulemeester J., De Rijck J., Gijsbers R., Debyser Z.. Retroviral integration: site matters: mechanisms and consequences of retroviral integration site selection. Bioessays. 2015; 37:1202–1214. PubMed PMC
Wong R.W., Mamede J.I., Hope T.J.. Impact of nucleoporin-mediated chromatin localization and nuclear architecture on HIV integration site selection. J. Virol. 2015; 89:9702–9705. PubMed PMC
Lusic M., Siliciano R.F.. Nuclear landscape of HIV-1 infection and integration. Nat. Rev. Microbiol. 2016; 15:69. PubMed
Burdick R.C., Hu W.-S., Pathak V.K.. Nuclear import of APOBEC3F-Labeled HIV-1 preintegration complexes. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:E4780–E4789. PubMed PMC
Di Primio C., Quercioli V., Allouch A., Gijsbers R., Christ F., Debyser Z., Arosio D., Cereseto A.. Single-cell imaging of HIV-1 provirus (SCIP). Proc. Natl. Acad. Sci. U.S.A. 2013; 110:5636–5641. PubMed PMC
Marini B., Kertesz-Farkas A., Ali H., Lucic B., Lisek K., Manganaro L. Nuclear architecture dictates HIV-1 integration site selection. Nature. 2015; 521:227–231. PubMed
Albanese A., Arosio D., Terreni M., Cereseto A.. HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS One. 2008; 3:e2413. PubMed PMC
Lelek M., Casartelli N., Pellin D., Rizzi E., Souque P., Severgnini M., Di Serio C., Fricke T., Diaz-Griffero F., Zimmer C. et al. .. Chromatin organization at the nuclear pore favours HIV replication. Nat. Commun. 2015; 6:6483. PubMed PMC
Di Nunzio F., Fricke T., Miccio A., Valle-Casuso J.C., Perez P., Souque P., Rizzi E., Severgnini M., Mavilio F., Charneau P. et al. .. Nup153 and Nup98 Bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology. 2013; 440:8–18. PubMed PMC
Ocwieja K.E., Brady T.L., Ronen K., Huegel A., Roth S.L., Schaller T., James L.C., Towers G.J., Young J.A.T., Chanda S.K. et al. .. HIV integration targeting: a pathway involving transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog. 2011; 7:e1001313. PubMed PMC
Pascual-Garcia P., Capelson M.. Nuclear pores in genome architecture and enhancer function. Curr. Opin. Cell Biol. 2019; 58:126–133. PubMed PMC
Pascual-Garcia P., Debo B., Aleman J.R., Talamas J.A., Lan Y., Nguyen N.H., Won K.J., Capelson M.. Metazoan nuclear pores provide a scaffold for poised genes and mediate induced enhancer-promoter contacts. Mol. Cell. 2017; 66:63–76. PubMed PMC
Ibarra A., Benner C., Tyagi S., Cool J., Hetzer M.W.. Nucleoporin-mediated regulation of cell identity genes. Genes Dev. 2016; 30:2253–2258. PubMed PMC
Liu X., Zhang Y., Chen Y., Li M., Zhou F., Li K., Cao H., Ni M., Liu Y., Gu Z. et al. .. In situ capture of chromatin interactions by biotinylated DCas9. Cell. 2017; 170:1028–1043. PubMed PMC
Price A.J., Fletcher A.J., Schaller T., Elliott T., Lee K., KewalRamani V.N., Chin J.W., Towers G.J., James L.C.. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLOS Pathog. 2012; 8:e1002896. PubMed PMC
Matreyek K.A., Yücel S.S., Li X., Engelman A.. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog. 2013; 9:e1003693. PubMed PMC
Bhattacharya A., Alam S.L., Fricke T., Zadrozny K., Sedzicki J., Taylor A.B., Demeler B., Pornillos O., Ganser-Pornillos B.K., Diaz-Griffero F. et al. .. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc. Natl. Acad. Sci. U.S.A. 2014; 111:18625–18630. PubMed PMC
Chin C.R., Perreira J.M., Savidis G., Portmann J.M., Aker A.M., Feeley E.M., Smith M.C., Brass A.L.. Direct visualization of HIV-1 replication intermediates shows that capsid and CPSF6 modulate HIV-1 intra-nuclear invasion and integration. Cell Rep. 2015; 13:1717–1731. PubMed PMC
Rasheedi S., Shun M.-C., Serrao E., Sowd G.A., Qian J., Hao C., Dasgupta T., Engelman A.N., Skowronski J.. The cleavage and polyadenylation specificity factor 6 (CPSF6) subunit of the capsid-recruited pre-messenger RNA cleavage factor I (CFIm) complex mediates HIV-1 integration into genes. J. Biol. Chem. 2016; 291:11809–11819. PubMed PMC
Sowd G.A., Serrao E., Wang H., Wang W., Fadel H.J., Poeschla E.M., Engelman A.N.. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc. Natl. Acad. Sci. U.S.A. 2016; 113:E1054–E1063. PubMed PMC
Achuthan V., Perreira J.M., Sowd G.A., Puray-Chavez M., McDougall W.M., Paulucci-Holthauzen A., Wu X., Fadel H.J., Poeschla E.M., Multani A.S. et al. .. Capsid-CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration. Cell Host Microbe. 2018; 24:392–404. PubMed PMC
Holman A.G., Coffin J.M.. Symmetrical base preferences surrounding HIV-1, avian Sarcoma/Leukosis virus, and murine leukemia virus integration sites. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:6103–6107. PubMed PMC
Wu X., Li Y., Crise B., Burgess S.M., Munroe D.J.. Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J. Virol. 2005; 79:5211–5214. PubMed PMC
Berry C., Hannenhalli S., Leipzig J., Bushman F.D.. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput. Biol. 2006; 2:e157. PubMed PMC
Benleulmi M.S., Matysiak J., Robert X., Miskey C., Mauro E., Lapaillerie D., Lesbats P., Chaignepain S., Henriquez D.R., Calmels C. et al. .. Modulation of the functional association between the HIV-1 intasome and the nucleosome by histone amino-terminal tails. Retrovirology. 2017; 14:54. PubMed PMC
Long Terminal Repeats of Gammaretroviruses Retain Stable Expression after Integration Retargeting