Brief Theoretical Overview of Bi-Fe-O Based Thin Films

. 2022 Dec 07 ; 15 (24) : . [epub] 20221207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36556529

This paper will provide a brief overview of the unique multiferroic material Bismuth ferrite (BFO). Considering that Bismuth ferrite is a unique material which possesses both ferroelectric and magnetic properties at room temperature, the uniqueness of Bismuth ferrite material will be discussed. Fundamental properties of the material including electrical and ferromagnetic properties also will be mentioned in this paper. Electrical properties include characterization of basic parameters considering the electrical resistivity and leakage current. Ferromagnetic properties involve the description of magnetic hysteresis characterization. Bismuth ferrite can be fabricated in a different form. The common forms will be mentioned and include powder, thin films and nanostructures. The most popular method of producing thin films based on BFO materials will be described and compared. Finally, the perspectives and potential applications of the material will be highlighted.

Zobrazit více v PubMed

Kolte J., Gulwade D., Daryapurkar A., Gopalan P. Microstructural characterization of ferroelectric Bismuth ferrite (BiFeO3) ceramic by electron backscattered diffraction. Mater. Sci. Forum. 2011;702–703:1011–1014.

Hwang J.S., Cho J.Y., Park S.Y., Yoo Y.J., Yoo P.S., Lee B.W., Lee Y.P. Multiferroic properties of stretchable BiFeO3 nano-composite film. Appl. Phys. Lett. 2015;106:062902. doi: 10.1063/1.4907220. DOI

Li Z., Dai J., Huang D., Wen X.C. Tuning the ferromagnetic and ferroelectric properties of BiFeO3 multiferroic nanofibers by Co/Ni spinel ferrites. J. Alloys Compd. 2022;907:164386. doi: 10.1016/j.jallcom.2022.164386. DOI

Cai W., Fu C., Hu W., Chen G., Deng X. Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of Bismuth ferrite ceramics. J. Alloys Compd. 2013;554:64–71. doi: 10.1016/j.jallcom.2012.11.154. DOI

Manzoor A., Afzal A.M., Umair M., Ali A., Rizwan M., Yaqoob M.Z. Synthesis and characterization of Bismuth ferrite (BiFeO3) nanoparticles by solution evaporation method. J. Magn. Magn. Mater. 2015;393:269–272. doi: 10.1016/j.jmmm.2015.05.066. DOI

Sharma A.D., Sharma H.B. Electrical and Magnetic Properties of Mn-Doped BiFeO3 Nanomaterials. Integr. Ferroelectr. 2019;203:81–90. doi: 10.1080/10584587.2019.1674969. DOI

Afzal A.M., Umair M., Dastgeer G., Rizwan M., Yaqoob M.Z., Rashid R., Munir H.S. Effect of O-vacancies on magnetic properties of Bismuth ferrite nanoparticles by solution evaporation method. J. Magn. Magn. Mater. 2016;399:77–80. doi: 10.1016/j.jmmm.2015.09.062. DOI

Safi R., Shokrollahi H. Physics, chemistry and synthesis methods of nanostructured Bismuth ferrite (BiFeO3) as a ferroelectro-magnetic material. Prog. Solid State Chem. 2012;40:6–15. doi: 10.1016/j.progsolidstchem.2012.03.001. DOI

Ţălu Ş., Priya A.S., Geetha D. Topographic characterization of (Zr, Mn) co-doped Bismuth ferrite thin film surfaces. Microsc. Res. Tech. 2021;84:2494–2500. doi: 10.1002/jemt.23783. PubMed DOI

Jindal K., Ameer S., Tomar M., Jha P.K., Gupta V. Influence of magnetic ordering on electronic, optical and magnetic properties of Bi2Fe4O9. Mater. Today: Proc. 2021;47:1637–1640. doi: 10.1016/j.matpr.2021.04.425. DOI

Sasa N., Hayashi Y., Fujii T., Watada A., Komoda H. Write-once disc with BiFeO3 thin films for multilevel optical recording. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2005;44:3643–3644. doi: 10.1143/JJAP.44.3643. DOI

Sharma A.D., Sharma H.B. Influence of Gd doping and thickness variation on structural, morphological and optical properties of nanocrystalline Bismuth ferrite thin films via sol–gel technology. J. Mater. Sci. Mater. Electron. 2021;32:20612–20624.

Silawongsawat C., Chandarak S., Sareein T., Ngamjarurojana A., Maensiri S., Laoratanakul P., Ananta S., Yimnirun R. Effect of calcination conditions on phase formation and characterization of BiFeO3 powders synthesized by a solid-state reaction. Adv. Mater. Res. 2008;55–57:237–240.

Basu S.R., Martin L.W., Chu Y.H., Gajek M., Ramesh R., Rai R.C., Xu X., Musfeldt J.L. Photoconductivity in BiFeO3 thin films. Appl. Phys. Lett. 2008;92:091905. doi: 10.1063/1.2887908. DOI

Hauser A.J., Zhang J., Mier L., Ricciardo R.A., Woodward P.M., Gustafson T.L., Brillson L.J., Yang F.Y. Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies. Appl. Phys. Lett. 2008;92:222901. doi: 10.1063/1.2939101. DOI

Shin H.W., Son J.Y. Multiferroic and photovoltaic current properties of tetragonally strained BiFeO3 thin films. J. Electroceramics. 2020;44:242–247. doi: 10.1007/s10832-020-00215-6. DOI

Yi J., Liu L., Shu L., Huang Y., Li J.F. Outstanding Ferroelectricity in Sol-Gel-Derived Polycrystalline BiFeO3 Films within a Wide Thickness Range. ACS Appl. Mater. Interfaces. 2022;14:21696–21704. doi: 10.1021/acsami.2c03137. PubMed DOI

Sarnatsky V.M., Vinokurov N.A., Murlieva Z.K., Alikhanov N.M.R. Magnetic and electrical characteristics of Bismuth ferrite, depending on the impurities, method of preparation and size of the nanoparticles. J. Nano-Electron. Phys. 2016;8:3008.

Kadomtseva A.M., Popov Y.F., Pyatakov A.P., Vorob’Ev G.P., Zvezdin A.K., Viehland D. Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: Enduring potential for a single phase, room-temperature magnetoelectric “holy grail". Phase Transit. 2006;79:1019–1042. doi: 10.1080/01411590601067235. DOI

Gupta S., Tomar M., Gupta V., James A.R., Pal M., Guo R., Bhalla A. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film. J. Appl. Phys. 2014;115:234105. doi: 10.1063/1.4884680. DOI

Zhang Q., Sando D., Nagarajan V. Chemical route derived Bismuth ferrite thin films and nanomaterials. J. Mater. Chem. C. 2016;4:4092–4124. doi: 10.1039/C6TC00243A. DOI

Leontie L., Caraman M., Alexe M., Harnagea C. Structural and optical characteristics of bismuth oxide thin films. Surf. Sci. 2002;507–510:480–485. doi: 10.1016/S0039-6028(02)01289-X. DOI

Ihlefeld J.F., Podraza N.J., Liu Z.K., Rai R.C., Xu X., Heeg T., Chen Y.B., Li J., Collins R.W., Musfeldt J.L., et al. Optical band gap of BiFe O3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 2008;92:142908. doi: 10.1063/1.2901160. DOI

Deepak Sharma A., Basantakumar Sharma H. Structural, optical and magnetic studies of nanocrystalline Bismuth ferrite (BiFeO3) thin films prepared by sol-gel technique. AIP Conf. Proc. 2020;2265:030281.

Ali Z., Atta A., Abbas Y., Sedeek K., Adam A., Abdeltwab E. Multiferroic BiFeO3 thin films: Structural and magnetic characterization. Thin Solid Film. 2015;577:124–127. doi: 10.1016/j.tsf.2014.09.021. DOI

Wang J.S., Jin K.J., Guo H.Z., Gu J.X., Wan Q., He X., Li X.L., Xu X.L., Yang G.Z. Evolution of structural distortion in BiFeO 3 thin films probed by second-harmonic generation. Sci. Rep. 2016;6:38268. doi: 10.1038/srep38268. PubMed DOI PMC

Zhang Y., Wang Y., Qi J., Tian Y., Sun M., Zhang J., Hu T., Wei M., Liu Y., Yang J. Enhanced magnetic properties of BiFeO3 thin films by doping: Analysis of structure and morphology. Nanomaterials. 2018;8:711. doi: 10.3390/nano8090711. PubMed DOI PMC

Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Viehland D., Vaithyanathan V., Schlom D.G., Waghmare U., et al. Epitaxial BiFeO 3 Multiferroic Thin Film Heterostructures. Science. 2003;299:1719–1722. doi: 10.1126/science.1080615. PubMed DOI

Zeches R.J., Rossell M.D., Zhang J.X., Hatt A.J., He Q., Yang C.-H., Kumar A., Wang C.H., Melville A., Adamo C., et al. A Strain-Driven Morphotropic Phase Boundary in BiFeO3. Science. 2009;326:977–980. doi: 10.1126/science.1177046. PubMed DOI

Yun Q., Xing W., Chen J., Gao W., Bai Y., Zhao S. Effect of Ho and Mn co-doping on structural, ferroelectric and ferromagnetic properties of BiFeO3 thin films. Thin Solid Film. 2015;584:103–107. doi: 10.1016/j.tsf.2014.11.030. DOI

Alexe M., Hesse D. Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun. 2011;2:256. doi: 10.1038/ncomms1261. DOI

Ma N., Yang Y. Boosted photocurrent in ferroelectric BaTiO3 materials via two dimensional planar-structured contact configurations. Nano Energy. 2018;50:417–424. doi: 10.1016/j.nanoen.2018.05.069. DOI

Liu X., Wang S., Long P., Li L., Peng Y., Xu Z., Han S., Sun Z., Hong M., Luo J. Polarization-Driven Self-Powered Photodetection in a Single-Phase Biaxial Hybrid Perovskite Ferroelectric. Angew. Chem. 2019;131:14646–14650. doi: 10.1002/ange.201907660. PubMed DOI

Li Z., Zhao Y., Li W.L., Song R., Zhao W., Wang Z., Peng Y., Fei W.D. Photovoltaic effect induced by self-polarization in BiFeO3 films. J. Phys. Chem. C. 2021;125:9411–9418.

Choi T., Lee S., Choi Y.J., Kiryukhin V., Cheong S.-W. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science. 2009;324:63–66. PubMed

Yi H.T., Choi T., Choi S.G., Oh Y.S., Cheong S.W. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 2011;23:3403–3407. doi: 10.1002/adma.201100805. PubMed DOI

Kuo C.Y., Hu Z., Yang J.C., Liao S.C., Huang Y.L., Vasudevan R.K., Okatan M.B., Jesse S., Kalinin S.V., Li L., et al. Single-domain multiferroic BiFeO3 films. Nat. Commun. 2016;7:12712. doi: 10.1038/ncomms12712. PubMed DOI PMC

Yang S.Y., Seidel J., Byrnes S.J., Shafer P., Yang C.-H., Rossell M.D., Yu P., Chu Y.-H., Scott J.F., Ager J.W., III, et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 2010;5:143–147. doi: 10.1038/nnano.2009.451. PubMed DOI

Yang S.Y., Martin L.W., Byrnes S.J., Conry T.E., Basu S.R., Paran D., Reichertz L., Ihlefeld J., Adamo C., Melville A., et al. effects in BiFeO3. Appl. Phys. Lett. 2009;95:062909. doi: 10.1063/1.3204695. DOI

Ji W., Yao K., Liang Y.C. Evidence of bulk photovoltaic effect and large tensor coefficient in ferroelectric BiFeO3 thin films. Phys. Rev. B-Condens. Matter Mater. Phys. 2011;84:094115.

Peters J.J.P., Brunier A.E., Iqbal A.N., Alexe M., Sanchez A.M. Structural and photoelectric properties of tensile strained BiFeO3. Phys. Rev. Mater. 2020;4:064416. doi: 10.1103/PhysRevMaterials.4.064416. DOI

Bhatnagar A., Kim Y.H., Hesse D., Alexe M. Persistent photoconductivity in strained epitaxial BiFeO3 thin Films. Nano Lett. 2014;14:5224–5228. doi: 10.1021/nl502183j. PubMed DOI

Zhang Y., Su H., Li H., Xie Z., Zhang Y., Zhou Y., Yang L., Lu H., Yuan G., Zheng H. Enhanced photovoltaic-pyroelectric coupled effect of BiFeO3/Au/ZnO heterostructures. Nano Energy. 2021;85:105968. doi: 10.1016/j.nanoen.2021.105968. DOI

Liang X.L., Dai J.Q., Zhang C.C. Effect of (Zn, Mn) co-doping on the structure and ferroelectric properties of BiFeO3 thin films. Ceram. Int. 2022;48:6347–6355. doi: 10.1016/j.ceramint.2021.11.177. DOI

Singh S.K., Palai R., Maruyama K., Ishiwara H. Effects of Ni substitution on structural, dielectrical, and ferroelectric properties of chemical-solution-deposited multiferroic BiFeO3 films. Electrochem. Solid-State Lett. 2008;11 doi: 10.1149/1.2912024. DOI

Leu C.C., Lin T.J., Chen S.Y., Hu C.T. Effects of bismuth oxide buffer layer on BiFeO3 thin film. J. Am. Ceram. Soc. 2015;98:724–731. doi: 10.1111/jace.13377. DOI

Li X., Qiu Y., Zhu Z., Zhang H., Yin D. Novel recyclable Z-scheme g-C3N4/carbon nanotubes/Bi25FeO40 heterostructure with enhanced visible-light photocatalytic performance towards tetracycline degradation. Chem. Eng. J. 2022;429:132130. doi: 10.1016/j.cej.2021.132130. DOI

Johnson R.W., Hultqvist A., Bent S.F., Elsevier B.V. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today. 2014;17:236–246. doi: 10.1016/j.mattod.2014.04.026. DOI

Zhang M., Liu J. Effect of annealing temperature on structural and electrical properties of Bismuth ferrite thin film. Adv. Mater. Res. 2013;602–604:1474–1478.

McDaniel M.D., Posadas A., Ngo T.Q., Dhamdhere A., Smith D.J., Demkov A.A., Ekerdt J.G. Epitaxial strontium titanate films grown by atomic layer deposition on SrTiO3-buffered Si(001) substrates. J. Vac. Sci. Technol. A Vac. Surf. Film. 2013;31:01A136. doi: 10.1116/1.4770291. DOI

Jalkanen P., Tuboltsev V., Marchand B., Savin A., Puttaswamy M., Vehkamäki M., Mizohata K., Kemell M., Hatanpää T., Rogozin V., et al. Magnetic properties of polycrystalline Bismuth ferrite thin films grown by atomic layer deposition. J. Phys. Chem. Lett. 2014;5:4319–4323. doi: 10.1021/jz502285f. PubMed DOI

Plokhikh A.V., Karateev I.A., Falmbigl M., Vasiliev A.L., Lapano J., Engel-Herbert R., Spanier J.E. Toward a Low-Temperature Route for Epitaxial Integration of BiFeO3 on Si. J. Phys. Chem. C. 2019;123:12203–12210. doi: 10.1021/acs.jpcc.8b12486. DOI

Puttaswamy M., Vehkamäki M., Kukli K., Dimri M.C., Kemell M., Hatanpää T., Heikkilä M.J., Mizohata K., Stern R., Ritala M., et al. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers. Thin Solid Film. 2016;611:78–87. doi: 10.1016/j.tsf.2016.05.006. DOI

Pham C.D., Chang J., Zurbuchen M.A., Chang J.P. Synthesis and Characterization of BiFeO3 Thin Films for Multiferroic Applications by Radical Enhanced Atomic Layer Deposition. Chem. Mater. 2015;27:7282–7288. doi: 10.1021/acs.chemmater.5b02162. DOI

Coll M., Gazquez J., Fina I., Khayat Z., Quindeau A., Alexe M., Varela M., Trolier-Mckinstry S., Obradors X., Puig T. Nanocrystalline Ferroelectric BiFeO3 Thin Films by Low-Temperature Atomic Layer Deposition. Chem. Mater. 2015;27:6322–6328. doi: 10.1021/acs.chemmater.5b02093. DOI

Ramazanov S., Sobola D., Orudzhev F., Knápek A., Polčák J., Potoček M., Kaspar P., Dallaev R. Surface modification and enhancement of ferromagnetism in BiFeO3 nanofilms deposited on HOPG. Nanomaterials. 2020;10:1–18. doi: 10.3390/nano10101990. PubMed DOI PMC

Majtyka A., Nowak A., Marchand B., Chrobak D., Ritala M., Räisänen J., Nowak R. Structure-Dependent Mechanical Properties of ALD-Grown Nanocrystalline BiFeO3 Multiferroics. J. Nanomater. 2016;2016:1–7. doi: 10.1155/2016/5348471. DOI

Zhao X., Cui R., Deng C. Magnetoelectric properties of three-layered composite thin film fabricated by pulsed laser deposition. Vacuum. 2022;200:110978. doi: 10.1016/j.vacuum.2022.110978. DOI

Raghavender A.T., Hong N.H., Park C., Jung M.H., Lee K.J., Lee D. Thickness dependent magnetic properties of BiFeO3 thin films prepared by pulsed laser deposition. Mater. Lett. 2011;65:2786–2788. doi: 10.1016/j.matlet.2011.05.060. DOI

Von Wenckstern H., Kneiß M., Hassa A., Storm P., Splith D., Grundmann M. A Review of the Segmented-Target Approach to Combinatorial Material Synthesis by Pulsed-Laser Deposition. Phys. Status Solidi (B) Basic Res. 2020;257:1900626. doi: 10.1002/pssb.201900626. DOI

Yi M.L., Wang C.B., Li L., Wang J.M., Shen Q., Zhang L.M. Influence of Tb doping on structure and multiferroic properties of BiFeO3 films prepared by pulsed laser deposition. Appl. Surf. Sci. 2015;344:47–51. doi: 10.1016/j.apsusc.2015.03.103. DOI

Aziz M.J. Film growth mechanisms in pulsed laser deposition. Appl. Phys. A: Mater. Sci. Processing. 2008;93:579–587. doi: 10.1007/s00339-008-4696-7. DOI

Gupta R.K., Yakuphanoglu F. Epitaxial growth of tin ferrite thin films using pulsed laser deposition technique. J. Alloys Compd. 2011;509:9523–9527. doi: 10.1016/j.jallcom.2011.07.058. DOI

Sharif S., Murtaza G., Meydan T., Williams P.I., Cuenca J., Hashimdeen S.H., Shaheen F., Ahmad R. Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3 thin films prepared by pulsed laser deposition. Thin Solid Film. 2018;662:83–89. doi: 10.1016/j.tsf.2018.07.029. DOI

Esat F., Comyn T.P., Bell A.J. Microstructure development of BiFeO3-PbTiO3 films deposited by pulsed laser deposition on platinum substrates. Acta Mater. 2014;66:44–53. doi: 10.1016/j.actamat.2013.11.043. DOI

Hohenberger S., Lazenka V., Selle S., Patzig C., Temst K., Lorenz M. Magnetoelectric Coupling in Epitaxial Multiferroic BiFeO3–BaTiO3 Composite Thin Films. Phys. Status Solidi (B) Basic Res. 2020;257:1900613. doi: 10.1002/pssb.201900613. DOI

Dong G., Tan G., Luo Y., Liu W., Xia A., Ren H. Charge defects and highly enhanced multiferroic properties in Mn and Cu co-doped BiFeO 3 thin films. Appl. Surf. Sci. 2014;305:55–61. doi: 10.1016/j.apsusc.2014.02.159. DOI

Kim D.H., Yang J., Kim M.S., Kim T.C. Structure and magnetic properties of spinel-perovskite nanocomposite thin films on SrTiO3 (111) substrates. J. Cryst. Growth. 2016;449:62–66. doi: 10.1016/j.jcrysgro.2016.05.041. DOI

Yuan G.L., Or S.W., Wang Y.P., Liu Z.G., Liu J.M. Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun. 2006;138:76–81. doi: 10.1016/j.ssc.2006.02.005. DOI

Pan T.M., Chou Y.C., Her J.L. Effect of Yb-doping on structural and electrical properties of BiFeO3 thin films. Mater. Chem. Phys. 2022;278:125699. doi: 10.1016/j.matchemphys.2022.125699. DOI

Kirsch A., Murshed M.M., Gaczynski P., Becker K.D., Gesing T.M. Bi2Fe4O9: Structural changes from nano-to micro-crystalline state. Z. Fur Nat.-Sect. B J. Chem. Sci. 2016;71:447–455. doi: 10.1515/znb-2015-0227. DOI

Wang X., Zhang M., Tian P., Chin W.S., Zhang C.M. A facile approach to pure-phase Bi2Fe4O9 nanoparticles sensitive to visible light. Appl. Surf. Sci. 2014;321:144–149. doi: 10.1016/j.apsusc.2014.09.166. DOI

Ameer S., Jindal K., Tomar M., Jha P.K., Gupta V. Insight into electronic, magnetic and optical properties of magnetically ordered Bi2Fe4O9. J. Magn. Magn. Mater. 2019;475:695–702. doi: 10.1016/j.jmmm.2018.12.028. DOI

Aplesnin S.S., Udod L.V., Sitnikov M.N., Velikanov D.A., Molokeev M.N., Romanova O.B., Shabanov A.V. Enhancement of ferromagnetism and ferroelectricity by oxygen vacancies in mullite Bi2Fe4O9 in the Bi2(Sn0.7Fe0.3)2O7-x matrix. J. Magn. Magn. Mater. 2022;559:169530. doi: 10.1016/j.jmmm.2022.169530. DOI

Krishna Rao S., Meher Abhinav E., Jaison D., Sundararaj A., Santhiya M., Althaf R., Gopalakrishnan C. Investigation of room temperature multi-functional properties of Nd doped mullite Bi2Fe4O9. Vacuum. 2020;172:109109. doi: 10.1016/j.vacuum.2019.109109. DOI

Ameer S., Jindal K., Tomar M., Jha P.K., Gupta V. Tunable electronic and magnetic properties of 3d transition metal doped Bi2Fe4O9. J. Magn. Magn. Mater. 2020;509:166893. doi: 10.1016/j.jmmm.2020.166893. DOI

Wang T., Deng H., Zhu L., Yang P., Chu J. Modified magnetization and electron transition behavior in Bi2Fe4O9, Bi2Fe4O9-CoFe2O4 and Bi2Fe4O9-NiFe2O4. Ceram. Int. 2018;44:2491–2495. doi: 10.1016/j.ceramint.2017.10.231. DOI

Subha Rao K., Manjunath Kamath S., Rajesh Kumar R., Kavitha G., MeherAbhinav E., Sobana Shri S., Induja S., Gopalakrishnan C. Delineating the photocatalytic properties of doped mullite Bi2Fe4O9 by virtue of Gd3+ ions. Mater. Lett. 2021;297:129960. doi: 10.1016/j.matlet.2021.129960. DOI

Murshed M.M., Nénert G., Burianek M., Robben L., Mühlberg M., Schneider H., Fischer R.X., Gesing T.M. Temperature-dependent structural studies of mullite-type Bi2Fe4O9. J. Solid State Chem. 2013;197:370–378. doi: 10.1016/j.jssc.2012.08.062. DOI

Ramirez F.E.N., Cabrera-Pasca G.A., Mestnik-Filho J., Carbonari A.W., Souza J.A. Magnetic and transport properties assisted by local distortions in Bi2Mn4O10 and Bi2Fe4O9 multiferroic compounds. J. Alloys Compd. 2015;651:405–413. doi: 10.1016/j.jallcom.2015.08.165. DOI

Murugesan Raghavan C., Kim J.W., Choi J.Y., Kim J.W., Kim S.S. Effects of Ti-doping on the structural, electrical and multiferroic properties of Bi2Fe4O9 thin films. Ceram. Int. 2014;40 Pt A:14165–14170. doi: 10.1016/j.ceramint.2014.06.003. DOI

Wang T., Deng H., Shen P., Hong J., Yue F., Zhu L., Yang P., Chu J. The synthesis and microstructural, optical, magnetic characterizations of m 0 0-oriented epitaxial Bi2Fe4O9 thin film by pulsed laser deposition. Mater. Lett. 2017;204:81–84. doi: 10.1016/j.matlet.2017.06.024. DOI

Kirsch A., Murshed M.M., Litterst F.J., Gesing T.M. Structural, Spectroscopic, and Thermoanalytic Studies on Bi2Fe4O9: Tunable Properties Driven by Nano- and Poly-crystalline States. J. Phys. Chem. C. 2019;123:3161–3171. doi: 10.1021/acs.jpcc.8b09698. DOI

Sun A., Chen H., Song C., Jiang F., Wang X., Fu Y. Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv. 2013;3:4332–4340. doi: 10.1039/c3ra22626c. DOI

Hu Z.T., Chen B., Lim T.T. Single-crystalline Bi2Fe4O9 synthesized by low-temperature co-precipitation: Performance as photo- and Fenton catalysts. RSC Adv. 2014;4:27820–27829. doi: 10.1039/C4RA02555E. DOI

Ji W., Li M., Zhang G., Wang P. Controlled synthesis of Bi25FeO40 with different morphologies: Growth mechanism and enhanced photo-Fenton catalytic properties. Dalton Trans. 2017;46:10586–10593. doi: 10.1039/C6DT04864A. PubMed DOI

Ameer S., Jindal K., Tomar M., Jha P.K., Gupta V. Growth of highly oriented orthorhombic phase of Bi2Fe4O9thin films by pulsed laser deposition. Mater. Today Proc. 2021;47:1646–1650.

Pooladi M., Sharifi I., Behzadipour M. A review of the structure, magnetic and electrical properties of Bismuth ferrite (Bi2Fe4O9) Ceram. Int. 2020;46:18453–18463. doi: 10.1016/j.ceramint.2020.04.241. DOI

Li F., Zhou J., Gao C., Qiu H., Gong Y., Gao J., Liu Y., Gao J. A green method to prepare magnetically recyclable Bi/Bi25FeO40-C nanocomposites for photocatalytic hydrogen generation. Appl. Surf. Sci. 2020;521:146342. doi: 10.1016/j.apsusc.2020.146342. DOI

Verma M.K., Kumar A., Singh L., Sonwani R.K., Das T., Singh S., Kumar V., Singh N.B., Mandal K. Bi25feo40 polycrystalline ceramic as highly efficient photocatalyst synthesised via economical chemical route. Mater. Technol. 2020;35:483–493. doi: 10.1080/10667857.2019.1701239. DOI

Köferstein R., Buttlar T., Ebbinghaus S.G. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J. Solid-State Chem. 2014;217:50–56. doi: 10.1016/j.jssc.2014.05.006. DOI

Rasi U.P.M., Shihab N.K., Angappane S., Gangineni R.B. Coexistence of ferromagnetic and spin glass-like magnetic order in Bi10Co16O38–Bi25FeO40 powder composite. Ceram. Int. 2019;45:15171–15177. doi: 10.1016/j.ceramint.2019.05.001. DOI

Craig D.C., Stephenson N.C. Structural Studies of Some Body-Centered Cubic Phases of Mixed Oxides Involving Bi,O,: The Structures of. J. Solid-State Chem. 1975;15:1–8. doi: 10.1016/0022-4596(75)90264-9. DOI

Ren L., Lu S.Y., Fang J.Z., Wu Y., Chen D.Z., Huang L.Y., Chen Y.F., Cheng C., Liang Y., Fang Z.Q. Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst. Catal. Today. 2017;281:656–661. doi: 10.1016/j.cattod.2016.06.028. DOI

Wang Y., Miao K., Zhao W., Jiang H., Liu L., Hu D., Cui B., Li Y., Sun Y. Novel nanoparticle-assembled tetrakaidekahedron Bi25FeO40 as efficient photo-Fenton catalysts for Rhodamine B degradation. Adv. Powder Technol. 2022;33:103579. doi: 10.1016/j.apt.2022.103579. DOI

Muthu Kumar A., Ragavendran V., Mayandi J., Ramachandran K., Jayakumar K. Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications. J. Mater. Sci. Mater. Electron. 2022;33:9512–9524. doi: 10.1007/s10854-021-07471-4. DOI

Ma Z.P., Zhang L., Ma X., Zhang Y.H., Shi F.N. Design of Z-scheme g-C3N4/BC/Bi25FeO40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste. Chemosphere. 2022;289:133262. doi: 10.1016/j.chemosphere.2021.133262. PubMed DOI

Ni Y., Shi D., Luo B., Yang Z., Xiong Z., Lu C., Fang L., Xia Y., Gong J., Cao L., et al. Tailoring Morphologies, Photocatalytic Activity, and Energy Bands of Bi25FeO40 via Valence State Transformation of Doped v Ions. Inorg. Chem. 2019;58:6966–6973. doi: 10.1021/acs.inorgchem.9b00592. PubMed DOI

Li P., Chen Q., Lin Y., Chang G., He Y. Effects of crystallite structure and interface band alignment on the photocatalytic property of Bismuth ferrite/ (N-doped) graphene composites. J. Alloys Compd. 2016;672:497–504. doi: 10.1016/j.jallcom.2016.02.143. DOI

De Góis M.M., de Paiva Araújo W., da Silva R.B., da Luz G.E., Soares J.M. Bi25FeO40−Fe3O4−Fe2O3 composites: Synthesis, structural characterization, magnetic and UV–visible photocatalytic properties. J. Alloys Compd. 2019;785:598–602. doi: 10.1016/j.jallcom.2019.01.168. DOI

Wang G., Cheng D., He T., Hu Y., Deng Q., Mao Y., Wang S. Enhanced visible-light responsive photocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation. J. Mater. Sci. Mater. Electron. 2019;30:10923–10933. doi: 10.1007/s10854-019-01436-4. DOI

Perejón A., Gil-González E., Sánchez-Jiménez P.E., West A.R., Pérez-Maqueda L.A. Electrical properties of Bismuth ferrites: Bi2Fe4O9 and Bi25FeO39. J. Eur. Ceram. Soc. 2019;39:330–339. doi: 10.1016/j.jeurceramsoc.2018.09.008. DOI

Zhang Y., Cao S., Liang C., Shen J., Chen Y., Feng Y., Chen H., Liu R., Jiang F. Electrocatalytic performance of Sb-modified Bi25FeO40 for nitrogen fixation. J. Colloid Interface Sci. 2021;593:335–344. doi: 10.1016/j.jcis.2021.02.106. PubMed DOI

Parida K., Choudhary R.N.P. Structural, dielectric, electrical and magnetic properties of chemicothermally synthesized material: BiCaFeCeO6. Curr. Appl. Phys. 2021;21:6–13. doi: 10.1016/j.cap.2020.10.001. DOI

Wang N., Luo X., Han L., Zhang Z., Zhang R., Olin H., Yang Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020;12:1. doi: 10.1007/s40820-020-00420-6. PubMed DOI PMC

Hussain A., Xu X., Yuan G., Wang Y., Yang Y., Yin J., Liu J., Liu Z. The development of BiFeO3-based ceramics. Chin. Sci. Bull. 2014;59:5161–5169. doi: 10.1007/s11434-014-0648-0. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...