• This record comes from PubMed

Modeling of Magnetic Films: A Scientific Perspective

. 2024 Mar 21 ; 17 (6) : . [epub] 20240321

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Magnetic thin-film modeling stands as a dynamic nexus of scientific inquiry and technological advancement, poised at the vanguard of materials science exploration. Leveraging a diverse suite of computational methodologies, including Monte Carlo simulations and molecular dynamics, researchers meticulously dissect the intricate interplay governing magnetism and thin-film growth across heterogeneous substrates. Recent strides, notably in multiscale modeling and machine learning paradigms, have engendered a paradigm shift in predictive capabilities, facilitating a nuanced understanding of thin-film dynamics spanning disparate spatiotemporal regimes. This interdisciplinary synergy, complemented by avantgarde experimental modalities such as in situ microscopy, promises a tapestry of transformative advancements in magnetic materials with far-reaching implications across multifaceted domains including magnetic data storage, spintronics, and magnetic sensing technologies. The confluence of computational modeling and experimental validation heralds a new era of scientific rigor, affording unparalleled insights into the real-time dynamics of magnetic films and bolstering the fidelity of predictive models. As researchers chart an ambitiously uncharted trajectory, the burgeoning realm of magnetic thin-film modeling burgeons with promise, poised to unlock novel paradigms in materials science and engineering. Through this intricate nexus of theoretical elucidation and empirical validation, magnetic thin-film modeling heralds a future replete with innovation, catalyzing a renaissance in technological possibilities across diverse industrial landscapes.

See more in PubMed

Ucer K.B. Thin Film Growth and Evolution. [(accessed on 4 July 2023)]. p. 26. Available online: http://users.wfu.edu/ucerkb/Nan242/L11–Thin_Film_Growth.pdf.

Mishra D., Greving D., Badini Confalonieri G.A., Perlich J., Toperverg B.P., Zabel H., Petracic O. Growth modes of nanoparticle superlattice thin films. Nanotechnology. 2014;25:205602. doi: 10.1088/0957-4484/25/20/205602. PubMed DOI

Dixit K.R. Epitaxial growth of thin films. Proc. Indian Acad. Sci. Sect. A. 1958;48:330–335. doi: 10.1007/BF03052917. DOI

Föll H. (Semiconductor Technology—Script). Modes, G. 3.3.2 Nucleation and Growth Modes. 2–4. [(accessed on 1 March 2024)]. Available online: https://www.tf.uni-kiel.de/matwis/amat/semitech_en/kap_3/backbone/r3_3_2.html.

Misiurev D., Kaspar P., Holcman V. Brief Theoretical Overview of Bi-Fe-O Based Thin Films. Materials. 2022;15:8719. doi: 10.3390/ma15248719. PubMed DOI PMC

Misiurev D., Kaspar P., Sobola D., Papež N.H., Fawaeer S., Holcman V. Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Study. Materials. 2023;16:3203. doi: 10.3390/ma16083203. PubMed DOI PMC

Oura K., Katayama M., Zotov A.V., Lifshits V.G., Saranin A.A. Surface Science. Advanced Texts in Physics. Springer; Berlin/Heidelberg, Germany: 2003. Growth of Thin Films; pp. 357–387. DOI

Gupta K.M., Gupta N. Advanced Electrical and Electronics Materials: Processes and Applications. Wiley; Hoboken, NJ, USA: 2015. Superconductive Materials; pp. 449–475. DOI

Bretonnet J.L. Basics of the density functional theory. AIMS Mater. Sci. 2017;4:1372–1405. doi: 10.3934/matersci.2017.6.1372. DOI

Zhou T., Zheng P., Pandey S.C., Sundararaman R., Gall D. The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges. J. Appl. Phys. 2018;123:37–39. doi: 10.1063/1.5020577. DOI

Jones M.D.K., Dawson J.A., Campbell S., Barrioz V., Whalley L.D., Qu Y. Modelling Interfaces in Thin-Film Photovoltaic Devices. Front. Chem. 2022;10:920676. doi: 10.3389/fchem.2022.920676. PubMed DOI PMC

Sitapure N., Kwon J.S. Il Neural network-based model predictive control for thin-film chemical deposition of quantum dots using data from a multiscale simulation. Chem. Eng. Res. Des. 2022;183:595–607. doi: 10.1016/j.cherd.2022.05.041. DOI

Pugliese A., Shyam B., Repa G.M., Nguyen A.H., Mehta A., Webb E.B., Fredin L.A., Strandwitz N.C. Atomic-Layer-Deposited Aluminum Oxide Thin Films Probed with X-ray Scattering and Compared to Molecular Dynamics and Density Functional Theory Models. ACS Omega. 2022;7:41033–41043. doi: 10.1021/acsomega.2c04402. PubMed DOI PMC

Mustard T.J.L., Kwak H.S., Goldberg A., Gavartin J., Morisato T., Yoshidome D., Halls M.D. Quantum mechanical simulation for the analysis, optimization and accelerated development of precursors and processes for Atomic Layer Deposition (ALD) J. Korean Ceram. Soc. 2016;53:317–324. doi: 10.4191/kcers.2016.53.3.317. DOI

Järvi J. Ph.D. Thesis. Aalto University; Espoo, Finland: 2023. [(accessed on 1 March 2024)]. Structure Search of Molecular Adsorbates with Bayesian Inference and Density-Functional Theory. Available online: http://urn.fi/URN:ISBN:978-952-64-1113-2.

Nikravesh S., Ryu D., Shen Y.L. Direct numerical simulation of buckling instability of thin films on a compliant substrate. Adv. Mech. Eng. 2019;11:1687814019840470. doi: 10.1177/1687814019840470. DOI

Fedotov A., Vakhrushev A., Severyukhina O., Sidorenko A., Savva Y., Klenov N., Soloviev I. Theoretical basis of quantum-mechanical modeling of functional nanostructures. Symmetry. 2021;13:883. doi: 10.3390/sym13050883. DOI

Altafini C., Ticozzi F. Modeling and control of quantum systems: An introduction. IEEE Trans. Automat. Contr. 2012;57:1898–1917. doi: 10.1109/TAC.2012.2195830. DOI

Cui Q. Perspective: Quantum mechanical methods in biochemistry and biophysics. J. Chem. Phys. 2016;145:140901. doi: 10.1063/1.4964410. PubMed DOI PMC

Acevedo O., Jorgensen W.L. Quantum and molecular mechanical Monte Carlo techniques for modeling condensed-phase reactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4:422–435. doi: 10.1002/wcms.1180. PubMed DOI PMC

Peng W., Hu Y., Li D., He Q. Full-Scale Simulation of the Fluid–Particle Interaction Under Magnetic Field Based on IIM–IBM–LBM Coupling Method. Front. Mater. 2022;9:932854. doi: 10.3389/fmats.2022.932854. DOI

Hegedüs J., Kugler S. Growth of amorphous selenium thin films: Classical versus quantum mechanical molecular dynamics simulation. J. Phys. Condens. Matter. 2005;17:6459–6468. doi: 10.1088/0953-8984/17/41/016. DOI

Turowski M., Jupé M., Melzig T., Pflug A., Ristau D. Multiple scale modeling of Al2O3 thin film growth in an ion beam sputtering process. Opt. Syst. Des. 2015 Adv. Opt. Thin Film. V. 2015;9627:96271M. doi: 10.1117/12.2191049. DOI

Turowski M., Jupé M., Ehlers H., Melzig T., Pflug A., Ristau D. Simulation in thin film technology. Opt. Syst. Des. 2015 Adv. Opt. Thin Film. V. 2015;9627:962707. doi: 10.1117/12.2191693. DOI

Zhang X., Lu G. Coupled quantum mechanics/molecular mechanics modeling of metallic materials: Theory and applications. J. Mater. Res. 2018;33:796–812. doi: 10.1557/jmr.2018.15. DOI

Hassan M.A., Elfiky M.B., Nukman Y., Mahmoodian R. Monte Carlo Simulation Model for Magnetron Sputtering Deposition. Adv. Mater. Res. 2015;1105:69–73. doi: 10.4028/www.scientific.net/AMR.1105.69. DOI

Prudnikov V.V., Prudnikov P.V., Romanovskiy D.E. Monte Carlo calculations of the magnetoresistance in magnetic multilayer structures with giant magnetoresistance effects. J. Phys. D Appl. Phys. 2016;49:235002. doi: 10.1088/0022-3727/49/23/235002. DOI

Goyal R., Lamba S., Annapoorni S. Modelling of strain induced magnetic anisotropy in Au additive FePt thin films. Prog. Nat. Sci. Mater. Int. 2019;29:517–524. doi: 10.1016/j.pnsc.2019.09.001. DOI

Fichthorn K.A., Weinberg W.H. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 1991;95:1090–1096. doi: 10.1063/1.461138. DOI

Purton J.A., Elena A.M., Teobaldi G. Kinetic Monte Carlo modeling of oxide thin film growth. J. Chem. Phys. 2022;156:214705. doi: 10.1063/5.0089043. PubMed DOI

Bäckström N., Löfgren J., Rydé V. Study of Magnetic Nanostructures Using Micromagnetic Simulations and Monte Carlo Methods. Uppsala Universitet; Uppsala, Sweden: 2014. [(accessed on 1 March 2024)]. Available online: https://www.diva-portal.org/smash/get/diva2:731423/FULLTEXT01.pdf.

Raychaudhuri S. Introduction to monte carlo simulation; Proceedings of the 2008 Winter Simulation Conference; Miami, FL, USA. 7–10 December 2008; pp. 91–100. DOI

Shim Y., Landau D.P., Pal S. Kinetic Monte Carlo simulations of binary alloy film growth. J. Phys. Condens. Matter. 1999;11:10008–10018. doi: 10.1088/0953-8984/11/49/318. DOI

Binder K. Monte Carlo Methods in Statistical Physics. Springer; Berlin/Heidelberg, Germany: 1986. Introduction: Theory and “Technical” Aspects of Monte Carlo Simulations; pp. 1–45. DOI

Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953;21:1087–1092. doi: 10.1063/1.1699114. DOI

Huggins W.J., O’Gorman B.A., Rubin N.C., Reichman D.R., Babbush R., Lee J. Unbiasing fermionic quantum Monte Carlo with a quantum computer. Nature. 2022;603:416–420. doi: 10.1038/s41586-021-04351-z. PubMed DOI PMC

Montanaro A. Quantum speedup of Monte Carlo methods. Proc. R. Soc. A. 2015;471:20150301. PubMed PMC

Chowdhury S., Camsari K.Y., Datta S. Accelerated quantum Monte Carlo with probabilistic computers. Commun. Phys. 2023;6:85. doi: 10.1038/s42005-023-01202-3. DOI

Namakian R., Novak B.R., Zhang X., Meng W.J., Moldovan D. A combined molecular dynamics/Monte Carlo simulation of Cu thin film growth on TiN substrates: Illustration of growth mechanisms and comparison with experiments. Appl. Surf. Sci. 2021;570:151013. doi: 10.1016/j.apsusc.2021.151013. DOI

Prudnikov V.V., Prudnikov P.V., Romanovskiy D.E. Monte Carlo simulation of magnetic multilayered structures with giant magnetoresistance effects. J. Phys. Conf. Ser. 2016;681:012016. doi: 10.1088/1742-6596/681/1/012016. DOI

Candia J., Albano E.V. Monte Carlo simulation of the irreversible growth of magnetic thin films. J. Appl. Phys. 2001;90:5395–5401. doi: 10.1063/1.1412841. DOI

Harris R.A., Terblans J.J., Swart H.C., Van Der Lingen E. Monte carlo simulation of Pt-Al thin film diffusion. J. South Afr. Inst. Min. Metall. 2011;111:187–191.

Wang Q., Yan Q., Nealey P.F., De Pablo J.J. Monte Carlo simulations of diblock copolymer thin films confined between two homogeneous surfaces. J. Chem. Phys. 2000;112:450–464. doi: 10.1063/1.480639. DOI

Trong D.N., Long V.C., Ţălu Ş. The study of the influence of matrix, size, rotation angle, and magnetic field on the isothermal entropy, and the néel phase transition temperature of Fe2O3 nanocomposite thin films by the monte-carlo simulation method. Coatings. 2021;11:1209. doi: 10.3390/coatings11101209. DOI

Lantagne-Hurtubise É., Rau J.G., Gingras M.J.P. Spin-ice thin films: Large-N theory and Monte Carlo simulations. Phys. Rev. X. 2018;8:21053. doi: 10.1103/PhysRevX.8.021053. DOI

Ni X., Hui C., Su N., Jiang W., Liu F. Monte Carlo simulations of electrical percolation in multicomponent thin films with nanofillers. Nanotechnology. 2018;29:075401. doi: 10.1088/1361-6528/aaa0be. PubMed DOI

Wichai K., Vao-soongnern V. Monte Carlo simulation of molecular and structural properties of random copolymer thin films. J. Mol. Model. 2021;27:301. doi: 10.1007/s00894-021-04927-6. PubMed DOI

Agudelo-Giraldo J.D., Restrepo-Parra E., Restrepo J. Monte Carlo simulation of roughness effect on magnetic and magnetotransport behavior of La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers. Phys. B Condens. Matter. 2014;434:149–154. doi: 10.1016/j.physb.2013.11.014. DOI

Sakhraoui T., Said M. Effect of the interfacial O and Mg vacancies on electronic structure and transport properties of the FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction: DFT calculations. J. Magn. Magn. Mater. 2017;444:394–400. doi: 10.1016/j.jmmm.2017.08.060. DOI

Angelis F.D., Fantacci S., Selloni A., Nazeeruddin M.K. Adsorption and Electronic Properties of Ru (II)-Dyes on Extended TiO2 Substrates for Dye-Sensitized Solar Cells. J. Phys. Chem. C. 2010;1:2–3.

Tas M., Şaşıoğlu E., Friedrich C., Galanakis I. A first-principles DFT + GW study of spin-filter and spin-gapless semiconducting Heusler compounds. J. Magn. Magn. Mater. 2017;441:333–338. doi: 10.1016/j.jmmm.2017.05.062. DOI

Toffoli T. Programmable matter methods. Futur. Gener. Comput. Syst. 1999;16:187–201. doi: 10.1016/S0167-739X(99)00046-1. DOI

Van Mourik T., Bühl M., Gaigeot M.P. Density functional theory across chemistry, physics and biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014;372:20120488. doi: 10.1098/rsta.2012.0488. PubMed DOI PMC

Jiang H., Sun H.Y. Quantum Chemistry in the Age of Machine Learning. Elsevier; Amsterdam, The Netherlands: 2022. Density-functional theory; pp. 27–65. DOI

Orio M., Pantazis D.A., Neese F. Density functional theory. Photosynth. Res. 2009;102:443–453. doi: 10.1007/s11120-009-9404-8. PubMed DOI PMC

Ponce-Pérez R., Alam K., Cocoletzi G.H., Takeuchi N., Smith A.R. Structural, electronic, and magnetic properties of the CrN (0 0 1) surface: First-principles studies. Appl. Surf. Sci. 2018;454:350–357. doi: 10.1016/j.apsusc.2018.05.118. DOI

Tung J.C., Chiang Y.H., Wang D.Y., Liu P.L. Adsorption of NO2 and H2s on ZnGa2O4(111) thin films: A first-principles density functional theory study. Appl. Sci. 2020;10:8822. doi: 10.3390/app10248822. DOI

Ouni B., Larbi T., Amlouk M. Vibrational, Electronic and Structural Study of Sprayed ZnO Thin Film Based on the IR-Raman Spectra and DFT Calculations. Cryst. Struct. Theory Appl. 2022;11:23–38. doi: 10.4236/csta.2022.112002. DOI

Mohammadpourrad Z., Abolhassani M. Density functional study of BiSbTeSe2 topological insulator thin films. Phys. Status Solidi Rapid Res. Lett. 2017;11:1700146. doi: 10.1002/pssr.201700146. DOI

Yu J., Xu Z., Xiao K., Yuan Y., Yin Q., Hu Z. Supplementary Materials Evolution of electronic structure in pristine and Rb-reconstructed surfaces of kagome metal RbV 3 Sb 5. Nano Lett. 2022;22:918–925. doi: 10.1021/acs.nanolett.1c03535. PubMed DOI

Fazio M.A., Yang L., Menoni C.S. Prediction of crystallized phases of amorphous Ta2O5-based mixed oxide thin films using a density functional theory database. APL Mater. 2021;9:031106. doi: 10.1063/5.0035573. DOI

Beck S., Ederer C. Tailoring interfacial properties in CaVO3 thin films and heterostructures with SrTiO3 and LaAlO3: A DFT+DMFT study. Phys. Rev. Mater. 2020;4:125002. doi: 10.1103/PhysRevMaterials.4.125002. DOI

Kaviani M., Aschauer U. Surface and interface effects in oxygen-deficient SrMnO3 thin films grown on SrTiO3. Phys. Chem. Chem. Phys. 2022;24:3951–3957. doi: 10.1039/D1CP04998D. PubMed DOI PMC

Unal B., Qin F., Han Y., Liu D.J., Jing D., Layson A.R., Jenks C.J., Evans J.W., Thiel P.A. Scanning tunneling microscopy and density functional theory study of initial bilayer growth of Ag films on NiAl(110) Phys. Rev. B Condens. Matter Mater. Phys. 2007;76:195410. doi: 10.1103/PhysRevB.76.195410. DOI

Obot I.B., Bahraq A.A., Alamri A.H. Density functional theory and molecular dynamics simulation of the corrosive particle diffusion in pyrimidine and its derivatives films. Comput. Mater. Sci. 2022;210:111428. doi: 10.1016/j.commatsci.2022.111428. DOI

Andreas C. Multiscale Multimodel Simulation of Micromagnetic Singularities. Forschungszentrum Jülich; Jülich, Germany: 2014.

Scholz W., Forster H., Suess D., Schrefl T., Fidler J. Micromagnetic simulation of domain wall pinning and domain wall motion. Comput. Mater. Sci. 2002;25:540–546. doi: 10.1016/S0927-0256(02)00332-4. DOI

Stupakiewicz A., Gogol P., Beauvillain P., Maziewski A. Micromagnetic simulation of magnetization reversal in ultrathin Co magnetic films on Si(1 1 1) vicinal substrates. Phys. B Condens. Matter. 2006;372:354–357. doi: 10.1016/j.physb.2005.10.084. DOI

Zhu J.G. Micromagnetic Modeling: Theory and Applications in Magnetic Thin Films. MRS Bull. 1995;20:49–54. doi: 10.1557/S088376940004536X. DOI

Metaxas P.J. Ph.D. Thesis. University of Western Australia; Perth, Australia: 2009. Domain Wall Dynamics in Ultrathin Ferromagnetic Film Structures: Disorder, Coupling and Periodic Pinning.

Leliaert J., Mulkers J. Tomorrow’s micromagnetic simulations. J. Appl. Phys. 2019;125:180901. doi: 10.1063/1.5093730. DOI

Miltat J.E., Donahue M.J. Numerical Micromagnetics: Finite Difference Methods. Handb. Magn. Adv. Magn. Mater. 2007;2:742–764. doi: 10.1002/9780470022184.hmm202. DOI

Wysocki A.L., Antropov V.P. Micromagnetic simulations with periodic boundary conditions: Hard-soft nanocomposites. J. Magn. Magn. Mater. 2017;428:274–286. doi: 10.1016/j.jmmm.2016.11.128. DOI

Fischbacher T., Franchin M., Fangohr H. Micromagnetic simulations of magnetoelectric materials. J. Appl. Phys. 2011;109:2–4. doi: 10.1063/1.3565999. DOI

Dengina E.Y., Bolyachkin A.S., Kulesh N.A., Vas’Kovskiy V.O. Micromagnetic modelling of stripe domains in thin films with a columnar microstructure. AIP Adv. 2021;11:7–12. doi: 10.1063/9.0000206. DOI

Solovev P.N., Izotov A.V., Belyaev B.A., Boev N.M. Micromagnetic simulation of domain structure in thin permalloy films with in-plane and perpendicular anisotropy. Phys. B Condens. Matter. 2021;604:412699. doi: 10.1016/j.physb.2020.412699. DOI

Frantiu M.A. Ph.D. Thesis. University of Groningen; Groningen, The Netherlands: 2019. Micromagnetic Simulations of Magnetic Thin Films; pp. 1–46.

Ruiz-Gómez S., Pérez L., Mascaraque A., Santos B., El Gabaly F., Schmid A.K., de la Figuera J. Stacking influence on the in-plane magnetic anisotropy in a 2D magnetic system. Nanoscale. 2023;15:8313–8319. doi: 10.1039/D3NR00348E. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...