Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37110039
PubMed Central
PMC10146284
DOI
10.3390/ma16083203
PII: ma16083203
Knihovny.cz E-zdroje
- Klíčová slova
- AFM, PFM, PLD, XPS, bismuth ferrite, ferroelectric, multiferroic, nanomaterials, thin film,
- Publikační typ
- časopisecké články MeSH
Over recent decades, the scientific community has managed to make great progress in the theoretical investigation and practical characterization of bismuth ferrite thin films. However, there is still much work to be completed in the field of magnetic property analysis. Under a normal operational temperature, the ferroelectric properties of bismuth ferrite could overcome the magnetic properties due to the robustness of ferroelectric alignment. Therefore, investigation of the ferroelectric domain structure is crucial for functionality of any potential devices. This paper reports deposition and analyzation of bismuth ferrite thin films by Piezoresponse Force Microscopy (PFM) and XPS methods, aiming to provide a characterization of deposited thin films. In this paper, thin films of 100 nm thick bismuth ferrite material were prepared by pulsed laser deposition on multilayer substrates Pt/Ti(TiO2)/Si. Our main purpose for the PFM investigation in this paper is to determine which magnetic pattern will be observed on Pt/Ti/Si and Pt/TiO2/Si multilayer substrates under certain deposition parameters by utilizing the PLD method and using samples of a deposited thickness of 100 nm. It was also important to determine how strong the measured piezoelectric response will be, considering parameters mentioned previously. By establishing a clear understanding of how prepared thin films react on various biases, we have provided a foundation for future research involving the formation of piezoelectric grains, thickness-dependent domain wall formations, and the effect of the substrate topology on the magnetic properties of bismuth ferrite films.
Zobrazit více v PubMed
Misiurev D., Kaspar P., Holcman V. Brief Theoretical Overview of Bi-Fe-O Based Thin Films. Materials. 2022;15:8719. doi: 10.3390/ma15248719. PubMed DOI PMC
Bouquet V., Baudouin F., Demange V., Députier S., Ollivier S., Joanny L., Rault L., Fouchet A., Guilloux-Viry M. Influence of two-dimensional oxide nanosheets seed layers on the growth of (100)BiFeO3 thin films synthesized by chemical solution deposition. Thin Solid Film. 2020;693:137687. doi: 10.1016/j.tsf.2019.137687. DOI
Pooladi M., Sharifi I., Behzadipour M. A review of the structure, magnetic and electrical properties of bismuth ferrite (Bi2Fe4O9) Ceram. Int. 2020;46:18453–18463. doi: 10.1016/j.ceramint.2020.04.241. DOI
Wushuer M., Xiaerding F., Mamat M., Xu M., Mijiti A., Aihaiti L. Influence of Mn doping on structural, optical, and magnetic properties of BiFeO3 films fabricated by the sol-gel method. ScienceAsia. 2020;46:330–335. doi: 10.2306/scienceasia1513-1874.2020.041. DOI
Mittal S., Garg S., Bhandari H., Sharma V. A review on recent progressions of Bismuth ferrite modified morphologies as an effective photocatalyst to curb water and air pollution. Inorg. Chem. Commun. 2022;144:109834. doi: 10.1016/j.inoche.2022.109834. DOI
Kim D.J., Paudel T.R., Lu H., Burton J.D., Connell J.G., Tsymbal E.Y., Seo S.S.A., Gruverman A. Room-temperature ferroelectricity in hexagonal TbMnO3 thin films. Adv. Mater. 2014;26:7660–7665. doi: 10.1002/adma.201403301. PubMed DOI
Wang S., Wang H., Jian J., Chen J., Cheng J. Effects of LNO buffer layers on electrical properties of BFO-PT thin films on stainless steel substrates. J. Alloys Compd. 2019;784:231–236. doi: 10.1016/j.jallcom.2019.01.033. DOI
Mo Z., Tian G., Yang W., Ning S., Ross C.A., Gao X., Liu J. Magnetoelectric coupling in self-assembled BiFeO3-CoFe2O4 nanocomposites on (110)-LaAlO3 substrates. APL Mater. 2021;9:041109. doi: 10.1063/5.0043071. DOI
Boni G.A., Chirila C.F., Stancu V., Amarande L., Pasuk I., Trupina L., Istrate C.M., Radu C., Tomulescu A., Neatu S., et al. Accidental Impurities in Epitaxial Pb(Zr0.2Ti0.8)O3 Thin Films Grown by Pulsed Laser Deposition and Their Impact on the Macroscopic Electric Properties. Nanomaterials. 2021;11:1177. doi: 10.3390/nano11051177. PubMed DOI PMC
Mahmood A., Echtenkamp W., Street M., Wang J.L., Cao S., Komesu T., Dowben P.A., Buragohain P., Lu H., Gruverman A., et al. Voltage controlled Néel vector rotation in zero magnetic field. Nat. Commun. 2021;12:1674. doi: 10.1038/s41467-021-21872-3. PubMed DOI PMC
Isakov D., Vasilev S., Gomes E.D.M., Almeida B., Shur V.Y., Kholkin A.L. Probing ferroelectric behaviour in charge-transfer organic meta-nitroaniline. Appl. Phys. Lett. 2016;109:162903. doi: 10.1063/1.4965710. DOI
Bu S., Wang D., Jin G., Dai R.U., Shi G., Jin D., Cheng J. Structural and multiferroic properties of 1-x(Bi0.85La 0.15)FeO3-xPbTiO3 solid solutions. Integr. Ferroelectr. 2013;141:9–17. doi: 10.1080/10584587.2013.772468. DOI
Kathavate V.S., Sonagara H., Kumar B.P., Singh I., Prasad K.E. Direct observations of changes in ferroelectric domain configurations around the indentation and ahead of the crack front in soft-doped PZT. Materialia. 2021;19:101191. doi: 10.1016/j.mtla.2021.101191. DOI
Kathavate V.S., Prasad K.E., Kiran M.S.R.N., Zhu Y. Mechanical characterization of piezoelectric materials: A perspective on deformation behavior across different microstructural length scales. J. Appl. Phys. 2022;132:121103. doi: 10.1063/5.0099161. DOI
Kathavate V.S., Sonagara H., Kumar B.P., Singh I., Prasad K.E. Tailoring nanomechanical properties of hard and soft PZT piezoceramics via domain engineering by selective annealing. Mater. Today Commun. 2021;28:102495. doi: 10.1016/j.mtcomm.2021.102495. DOI
Watson B.H., Brova M.J., Fanton M., Meyer R.J., Messing G.L. Textured Mn-doped PIN-PMN-PT Ceramics: Harnessing Intrinsic Piezoelectricity for High-power Transducer Applications. J. Eur. Ceram. Soc. 2021;41:1270–1279. doi: 10.1016/j.jeurceramsoc.2020.07.071. DOI
Kathavate V.S., Praveen Kumar B., Singh I., Eswar Prasad K. Analysis of indentation size effect (ISE) in nanoindentation hardness in polycrystalline PMN-PT piezoceramics with different domain configurations. Ceram. Int. 2021;47:11870–11877. doi: 10.1016/j.ceramint.2021.01.027. DOI
Zhang M.H., Thong H.C., Lu Y.X., Sun W., Li J.F., Wang K. (K,Na)NbO3-based lead-free piezoelectric materials: An encounter with scanning probe microscopy. J. Korean Ceram. Soc. 2017;54:261–271. doi: 10.4191/kcers.2017.54.4.10. DOI
Fox G.R., Trolier-McKinstry S., Krupanidhi S.B., Casas L.M. Pt/ti/sio2/si substrates. J. Mater. Res. 1995;10:1508–1515. doi: 10.1557/JMR.1995.1508. DOI
Yun Q., Bai A., Zhao S. Lattice distortion of holmium doped bismuth ferrite nanofilms. J. Rare Earths. 2014;32:884–889. doi: 10.1016/S1002-0721(14)60158-7. DOI
Kozakov A.T., Guglev K.A., Ilyasov V.V., Ershov I.V., Nikol’skii A.V., Smotrakov V.G., Eremkin V.V. Electronic structure of bismuth ferrite and hematite single crystals: X-ray photoelectron study and calculation. Phys. Solid State. 2011;53:41–47. doi: 10.1134/S1063783411010148. DOI
Sobola D., Ramazanov S., Koneĉnỳ M., Orudzhev F., Kaspar P., Papež N., Knápek A., Potoĉek M. Complementary SEM-AFM of swelling Bi-Fe-O film on HOPG substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC
Tahir M., Riaz S., Khan U., Hussain S.S., Nairan A., Akbar A., Saleem M., Atiq S., Naseem S. Enhanced structural and magnetic ordering in as-synthesized Ca doped bismuth iron oxide nanoceramics. J. Alloys Compd. 2020;832:154725. doi: 10.1016/j.jallcom.2020.154725. DOI
Wei Y., Dong S., Mehrez S., Niaz Akhtar M., Tra Giang H. Synergistic effect of polyindole decoration on bismuth neodymium ferrite powder for achieving wideband microwave absorber. Ceram. Int. 2022;48:25049–25055. doi: 10.1016/j.ceramint.2022.05.159. DOI
Kossar S., Amiruddin R., Rasool A., Giridharan N.V., Dhayanithi D., Santhosh Kumar M.C. Ferroelectric polarization induced memristive behavior in bismuth ferrite (BiFeO3) based memory devices. Superlattices Microstruct. 2020;148:106726. doi: 10.1016/j.spmi.2020.106726. DOI
Liang X.L., Dai J.Q., Zhang G. dong Great ferroelectric properties and narrow bandgaps of BiFeO3 thin films by (Mg, Mn) modifying. Appl. Surf. Sci. 2022;586:152751. doi: 10.1016/j.apsusc.2022.152751. DOI
Ruby S., Inbanathan S.S.R. Structural properties and electrical conduction mechanisms of Bi 0.9 Sm 0.05 Tb 0.05 FeO3 Thin Film. Appl. Surf. Sci. 2018;449:10–14. doi: 10.1016/j.apsusc.2017.11.231. DOI
Sharif S., Murtaza G., Meydan T., Williams P.I., Cuenca J., Hashimdeen S.H., Shaheen F., Ahmad R. Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3 thin films prepared by pulsed laser deposition. Thin Solid Film. 2018;662:83–89. doi: 10.1016/j.tsf.2018.07.029. DOI
Balke N., Schenk T., Stolichnov I., Gruverman A. Piezoresponse Force Microscopy (PFM) Elsevier; Amsterdam, The Netherlands: 2019. DOI
Chu Y.H., Martin L.W., Holcomb M.B., Ramesh R. Controlling magnetism with multiferroics. Mater. Today. 2007;10:16–23. doi: 10.1016/S1369-7021(07)70241-9. DOI
Chen D., Chen Z., He Q., Clarkson J.D., Serrao C.R., Yadav A.K., Nowakowski M.E., Fan Z., You L., Gao X., et al. Interface Engineering of Domain Structures in BiFeO3 Thin Films. Nano Lett. 2017;17:486–493. doi: 10.1021/acs.nanolett.6b04512. PubMed DOI
Jiang X., Sun J., Chai X., Chen Y., Zhang W., Jiang J., Jiang A. Large domain-wall current in BiFeO3 epitaxial thin films. Ceram. Int. 2021;47:10130–10136. doi: 10.1016/j.ceramint.2020.12.161. DOI
Ahn Y., Seo J., Yeog Son J., Jang J. Ferroelectric domain structures and thickness scaling of epitaxial BiFeO3 thin films. Mater. Lett. 2015;154:25–28. doi: 10.1016/j.matlet.2015.04.072. DOI
Iorgu A.I., Maxim F., Matei C., Ferreira L.P., Ferreira P., Cruz M.M., Berger D. Fast synthesis of rare-earth (Pr3+, Sm3+, Eu3+and Gd3+) doped bismuth ferrite powders with enhanced magnetic properties. J. Alloys Compd. 2015;629:62–68. doi: 10.1016/j.jallcom.2014.12.108. DOI
Liu Y., Wang Y., Ma J., Li S., Pan H., Nan C.W., Lin Y.H. Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Prog. Mater. Sci. 2022;127:100943. doi: 10.1016/j.pmatsci.2022.100943. DOI
Modeling of Magnetic Films: A Scientific Perspective