Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CEITEC 2020 (LQ1601)
Ministry of Education, Youth and Sports of the Czech Republic
FEKT-S-20-6352
Internal Grant Agency of Brno University of Technology
RVO:68081731
Czech Academy of Sciences Research Infrastructure
MEYS CR (LM2018110)
CEITEC Nano Research Infrastructure
PubMed
32630184
PubMed Central
PMC7407335
DOI
10.3390/nano10071294
PII: nano10071294
Knihovny.cz E-zdroje
- Klíčová slova
- electrochemical etching, field emission microscopy, polymer graphite tip,
- Publikační typ
- časopisecké články MeSH
This paper investigates field emission behavior from the surface of a tip that was prepared from polymer graphite nanocomposites subjected to electrochemical etching. The essence of the tip preparation is to create a membrane of etchant over an electrode metal ring. The graphite rod acts here as an anode and immerses into the membrane filled with alkali etchant. After the etching process, the tip is cleaned and analyzed by Raman spectroscopy, investigating the chemical composition of the tip. The topography information is obtained using the Scanning Electron Microscopy and by Field Emission Microscopy. The evaluation and characterization of field emission behavior is performed at ultra-high vacuum conditions using the Field Emission Microscopy where both the field electron emission pattern projected on the screen and current-voltage characteristics are recorded. The latter is an essential tool that is used both for the imaging of the tip surfaces by electrons that are emitted toward the screen, as well as a tool for measuring current-voltage characteristics that are the input to test field emission orthodoxy.
Zobrazit více v PubMed
Vishnu N., Gopalakrishnan A., Badhulika S. Impact of intrinsic iron on electrochemical oxidation of pencil graphite and its application as supercapacitors. Electrochim. Acta. 2018;269:274–281. doi: 10.1016/j.electacta.2018.03.024. DOI
Torrinha A., Amorim C.G., Montenegro M., Araujo A.N. Biosensing based on pencil graphite electrodes. Talanta. 2018;190:235–247. doi: 10.1016/j.talanta.2018.07.086. PubMed DOI
Azadmehr F., Zarei K. Ultrasensitive determination of ceftizoxime using pencil graphite electrode modified by hollow gold nanoparticles/reduced graphene oxide. Arab. J. Chem. 2020;13:1890–1900. doi: 10.1016/j.arabjc.2018.02.004. DOI
Kaspar P., Sobola D., Dallaev R., Ramazanov S., Nebojsa A., Rezaee S., Grmela L. Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS. Appl. Surf. Sci. 2019;493:673–678. doi: 10.1016/j.apsusc.2019.07.058. DOI
Purushothama H.T., Nayaka Y.A., Vinay M.M., Manjunatha P., Yathisha R.O., Basavarajappa K.V. Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorpromazine. J. Sci. Adv. Mater. Devices. 2018;3:161–166. doi: 10.1016/j.jsamd.2018.03.007. DOI
Jin J., Peng X., Jiang J., Meng X., Zhao W. Frictional characteristics of impregnated graphite with different graphitization degree versus chromium stainless steel under varying PV values. Tribol. Int. 2019 doi: 10.1016/j.triboint.2019.106063. DOI
Urban F., Lupina G., Grillo A., Martucciello N., Di Bartolomeo A. Contact resistance and mobility in back-gate graphene transistors. Nano Express. 2020;1:010001. doi: 10.1088/2632-959X/ab7055. DOI
Di Bartolomeo A., Giubileo F., Iemmo L., Romeo F., Russo S., Unal S., Passacantando M., Grossi V., Cucolo A.M. Leakage and field emission in side-gate graphene field effect transistors. Appl. Phys. Lett. 2016;109:023510. doi: 10.1063/1.4958618. DOI
Shao X., Srinivasan A., Ang W.K., Khursheed A. A high-brightness large-diameter graphene coated point cathode field emission electron source. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-018-03721-y. PubMed DOI PMC
Mousa M.S., Daradkeh S.I., Ali E.S.B. Comparative Study of Field Electron Emission from Single-Walled Carbon Nanotube and Multi-Walled Carbon Nanotube Mounted on Tungsten. Jordan J. Phys. 2019;12:7–15.
Knapek A., Sobola D., Burda D., Danhel A., Mousa M., Kolarik V. Polymer Graphite Pencil Lead as a Cheap Alternative for Classic Conductive SPM Probes. Nanomaterials. 2019;9:1756. doi: 10.3390/nano9121756. PubMed DOI PMC
Purushothama H.T., Arthoba Nayaka Y. Pencil graphite electrode based electrochemical system for the investigation of antihypertensive drug hydrochlorothiazide: An electrochemical study. Chem. Phys. Lett. 2019;734 doi: 10.1016/j.cplett.2019.136718. DOI
Riman D., Prodromidis M.I., Jirovsky D., Hrbac J. Low-cost pencil graphite-based electrochemical detector for HPLC with near-coulometric efficiency. Sens. Actuators B Chem. 2019;296:126618. doi: 10.1016/j.snb.2019.05.095. DOI
Navratil R., Kotzianova A., Halouzka V., Opletal T., Triskova I., Trnkova L., Hrbac J. Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study. J. Electroanal. Chem. 2016;783:152–160. doi: 10.1016/j.jelechem.2016.11.030. DOI
Knapek A., Horacek M., Chlumska J., Kuparowitz T., Sobola J., Sikula J. Preparation and noise analysis of polymer graphite cathode. Metrol. Meas. Syst. 2018;25:451–458. doi: 10.24425/123895. DOI
Nagarajan S., Vairamuthu R., Angamuthu R., Venkatachalam G. Electrochemical fabrication of reusable pencil graphite electrodes for highly sensitive, selective and simultaneous determination of hydroquinone and catechol. J. Electroanal. Chem. 2019;846:113156. doi: 10.1016/j.jelechem.2019.05.038. DOI
Kim Y., Sung A., Seo Y., Hwang S., Kim H. Measurement of hardness and friction properties of pencil leads for quantification of pencil hardness test. Adv. Appl. Ceram. 2016;115:443–448. doi: 10.1080/17436753.2016.1186364. DOI
Sakia B.J., Parthasarathy G., Borah R.R., Borthakur R. Raman and FTIR Spectroscopic Evaluation of Clay Minerals and Estimation of Metal Contaminations in Natural Deposition of Surface Sediments from Brahmaputra River. Int. J. Geosci. 2007;7:873–883. doi: 10.4236/ijg.2016.77064. DOI
Kloprogge J.T. Raman Spectroscopy of Clay Minerals. Infrared Raman Spectrosc. Clay Miner. 2017:150–199. doi: 10.1016/B978-0-08-100355-8.00006-0. DOI
Chen K., Xue D. From graphite-clay composites to graphene electrode materials: In-situ electrochemical oxidation and functionalization. Mater. Res. Bull. 2017;96:281–285. doi: 10.1016/j.materresbull.2017.01.025. DOI
Naemura K., Ikuta D., Kagi H., Odake S., Ueda T., Ohi S., Kobayashi T., Svojtka M., Hirajima T. Diamond and Other Possible Ultradeep Evidence Discovered in the Orogenic Spinel-Garnet Peridotite from the Moldanubian Zone of the Bohemian Massif, Czech Republic. Ultrah. Press. Metamorph. :2011. doi: 10.1016/b978-0-12-385144-4.00002-3. DOI
Knápek A., Sýkora J., Chlumská J., Sobola D. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes. Microelectron. Eng. 2017;173:42–47. doi: 10.1016/j.mee.2017.04.002. DOI
Carroll D., Starkey H.C. Reactivity of Clay Minerals with Acids and Alkalies. Clays Clay Miner. 1971;19:321–333. doi: 10.1346/CCMN.1971.0190508. DOI
Drechsler M. Erwin Müller and the early development of field emission microscopy. Surf. Sci. 1978;70:1–18. doi: 10.1016/0039-6028(78)90397-7. DOI
Forbes R.G. The Murphy–Good plot: A better method of analysing field emission data. R. Soc. Open Sci. 2019;12:190912. doi: 10.1098/rsos.190912. PubMed DOI PMC
Allaham M.M., Forbes R.G., Knapek A., Mousa M.S. Implementation of the orthodoxy test as a validity check on experimental field emission data. J. Electr. Eng. Slovak. 2020;71:37–42. doi: 10.2478/jee-2020-0005. DOI
Allaham M.M., Forbes R.G., Mousa M.S. Applying the Field Emission Orthodoxy Test to Murphy-Good Plots. Jordan J. Phys. 2020;13:101–111.
Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition