Piezophotocatalytic Activity of PVDF/Fe3O4 Nanofibers: Effect of Ultrasound Frequency and Light Source on the Decomposition of Methylene Blue

. 2025 Jun 10 ; 10 (22) : 23035-23048. [epub] 20250529

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40521515

This study investigates the piezophotocatalytic (PPhC) performance of electrospun nanofibrous membranes composed of polyvinylidene fluoride (PVDF) and magnetite (Fe3O4) nanoparticles. The composite membranes were synthesized via electrospinning, with optimized parameters to promote β-phase crystallinity and uniform fiber morphology. Structural and phase analyses by SEM, FTIR, Raman, and XPS confirmed the predominance of the electroactive β-phase (99.8%) in the composite, as well as strong interfacial interaction between Fe3O4 and the PVDF matrix. The composites exhibited significantly enhanced surface hydrophilicity and piezoelectric response compared to pristine PVDF. The piezoelectric potential generation was confirmed using a flexible piezoelectric nanogenerator (PENG), where a 3 × 1 cm membrane generated output voltages up to ∼2 V under periodic mechanical deformation at 4 Hz. Photocatalytic and piezophotocatalytic degradation of methylene blue (MB) was carried out under UV and visible light at varying ultrasonic frequencies. Maximum PPhC efficiency was achieved at 40 kHz, with 93% dye degradation in 60 min and a reaction rate constant exceeding the sum of photocatalysis and piezocatalysis by 13%, indicating a pronounced synergistic effect. Reactive oxygen species trapping and fluorescence spectroscopy confirmed •OH as the dominant oxidant. H2O2 productivity under PPhC reached 1700 μmol·g-1·h-1 in pure water, with a light-to-chemical energy conversion efficiency of 0.26%. Additionally, experiments conducted under an alternating magnetic field (0.3 T, 1.3 Hz) demonstrated 50% MB degradation within 240 min, revealing the contribution of magnetoelectric coupling as an alternative catalytic activation mechanism. The results suggest that PVDF/Fe3O4 nanocomposites are highly promising for multifunctional catalytic applications, combining piezoelectric, photo-, and magnetoelectric activation for efficient water purification and green oxidant production.

Zobrazit více v PubMed

Shannon M. A., Bohn P. W., Elimelech M., Georgiadis J. G., Mariñas B. J., Mayes A. M.. Science and technology for water purification in the coming decades. Nature. 2008;452:301–310. doi: 10.1038/nature06599. PubMed DOI

Somma S., Reverchon E., Baldino L.. Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. ChemEngineering. 2021;5:47. doi: 10.3390/chemengineering5030047. DOI

Dhamorikar R. S., Lade V. G., Kewalramani P. V., Bindwal A. B.. Review on integrated advanced oxidation processes for water and wastewater treatment. J. Ind. Eng. Chem. 2024;138:104–122. doi: 10.1016/j.jiec.2024.04.037. DOI

Isaev A. B., Shabanov N. S., Magomedova A. G., Nidheesh P. V., Oturan M. A.. Electrochemical oxidation of azo dyes in water: a review. Environ. Chem. Lett. 2023;21:2863–2911. doi: 10.1007/s10311-023-01610-5. DOI

Orudzhev F. F., Aliev Z. M., Gasanova F. G., Isaev A. B., Shabanov N. S.. Photoelectrocatalytic oxidation of phenol on TiO2 nanotubes under oxygen pressure. Russ. J. Electrochem. 2015;51:1108–1114. doi: 10.1134/S1023193515110130. DOI

Koe W. S., Lee J. W., Chong W. C., Pang Y. L., Sim L. C.. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020;27:2522–2565. doi: 10.1007/s11356-019-07193-5. PubMed DOI

Jing L., Xu Y., Xie M., Li Z., Wu C., Zhao H., Wang J., Wang H., Yan Y., Zhong N.. et al. Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects. Nano Energy. 2023;112:108508. doi: 10.1016/j.nanoen.2023.108508. DOI

Rabadanova A., Abdurakhmanov M., Gulakhmedov R., Shuaibov A., Selimov D., Sobola D., Částková K., Ramazanov S., Orudzhev F.. Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane. Chim. Techno Acta. 2022;9:20229420. doi: 10.15826/chimtech.2022.9.4.20. DOI

Orudzhev F. F., Sobola D. S., Ramazanov S. M., Častková K., Selimov D. A., Rabadanova A. A., Shuaibov A. O., Gulakhmedov R. R., Abdurakhmanov M. G., Giraev K. M.. Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers. Polymers (Basel). 2023;15:3252. doi: 10.3390/polym15153252. PubMed DOI PMC

Orudzhev F., Selimov D., Rabadanova A., Shuaibov A., Abdurakhamanov M., Gulakhmedov R., Papež N., Ramazanov S., Zvereva I., Částková K.. 1D/2D Electrospun Polyvinylidene Fluoride Nanofibers/Carbon Flakes Hybrid Nonmetal Polymeric Photo- and Piezocatalyst. ChemistrySelect. 2023;8:e202303318. doi: 10.1002/slct.202303318. DOI

Wang H., Fu Q., Luo J., Zhao D., Luo L., Li W.. Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor. Appl. Phys. Lett. 2017;110:242902. doi: 10.1063/1.4986443. DOI

Jayakumar O. D., Abdelhamid E. H., Kotari V., Mandal B. P., Rao R., Jagannath J., Naik V. M., Naik R., Tyagi A. K.. Fabrication of flexible and self-standing inorganic–organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe 3 O 4 nanoparticles. Dalt. Trans. 2015;44:15872–15881. doi: 10.1039/C5DT01509J. PubMed DOI

Magomedova A., Isaev A., Orudzhev F., Alikhanov N., Emirov R., Rabadanov M., Mingshan Z.. Electrochemical Synthesis of Superparamagnetic Fe3O4 Nanoparticles for the Photo-Fenton oxidation of Rhodamine B. ChemistrySelect. 2023;8:e202301694. doi: 10.1002/slct.202301694. DOI

Magomedova A., Isaev A., Orudzhev F., Sobola D., Murtazali R., Rabadanova A., Shabanov N. S., Zhu M., Emirov R., Gadzhimagomedov S.. et al. Magnetically Separable Mixed-Phase α/γ-Fe2O3 Catalyst for Photo-Fenton-like Oxidation of Rhodamine B. Catalysts. 2023;13:872. doi: 10.3390/catal13050872. DOI

Zhou T., Wu X., Mao J., Zhang Y., Lim T.-T.. Rapid degradation of sulfonamides in a novel heterogeneous sonophotochemical magnetite-catalyzed Fenton-like (US/UV/Fe3O4/oxalate) system. Appl. Catal. B Environ. 2014;160–161:325–334. doi: 10.1016/j.apcatb.2014.05.036. DOI

Huang R., Fang Z., Fang X., Tsang E. P.. Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor. J. Colloid Interface Sci. 2014;436:258–266. doi: 10.1016/j.jcis.2014.08.035. PubMed DOI

Zhang M., Liu C., Li B., Shen Y., Wang H., Ji K., Mao X., Wei L., Sun R., Zhou F.. Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. Nanoscale Adv. 2023;5:1043–1059. doi: 10.1039/D2NA00773H. PubMed DOI PMC

Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D.. et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI

Qiu P., Park B., Choi J., Thokchom B., Pandit A. B., Khim J.. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 2018;45:29–49. doi: 10.1016/j.ultsonch.2018.03.003. PubMed DOI

Amaniampong P. N., Jérôme F.. Catalysis under ultrasonic irradiation: a sound synergy. Curr. Opin. Green Sustain. Chem. 2020;22:7–12. doi: 10.1016/j.cogsc.2019.11.002. DOI

Pirsaheb M., Moradi N.. Sonochemical degradation of pesticides in aqueous solution: investigation on the influence of operating parameters and degradation pathway – a systematic review. RSC Adv. 2020;10:7396–7423. doi: 10.1039/C9RA11025A. PubMed DOI PMC

Babu, S. G. ; Neppolian, B. ; Ashokkumar, M. . Ultrasound-Assisted Synthesis of Nanoparticles for Energy and Environmental Applications. In Handbook of Ultrasonics and Sonochemistry; Springer Singapore: Singapore, 2015; pp 1–34.

Hung H.-M., Hoffmann M. R.. Kinetics and Mechanism of the Sonolytic Degradation of Chlorinated Hydrocarbons: Frequency Effects. J. Phys. Chem. A. 1999;103:2734–2739. doi: 10.1021/jp9845930. DOI

Cai X., Lei T., Sun D., Lin L.. A critical analysis of the α, β and γ phases in poly­(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI

Salimi A., Yousefi A. A.. Analysis Method. Polym. Test. 2003;22:699–704. doi: 10.1016/S0142-9418(03)00003-5. DOI

Chipara D. M., Trevino A., Lozano K., Hoke B., Martirosyan K. S., Chipara M.. PVDF-Fe3O4 nanocomposites: spectroscopic investigations. J. Polym. Res. 2022;29:212. doi: 10.1007/s10965-022-03045-y. DOI

Jiang P., Lu J., Li K., Chen X., Dan R.. Research on hydrophobicity of electrospun Fe 3 O 4 /PVDF nanofiber membranes under different preparation conditions. Fullerenes, Nanotub. Carbon Nanostructures. 2020;28:381–386. doi: 10.1080/1536383X.2019.1687453. DOI

Yang D. C., Thomas E. L.. On the α -> β transition by deformation of highly oriented poly­(vinylidene fluoride) J. Mater. Sci. Lett. 1984;3:929–936. doi: 10.1007/BF00719591. DOI

Wu Y., Hsu S. L., Honeker C., Bravet D. J., Williams D. S.. The Role of Surface Charge of Nucleation Agents on the Crystallization Behavior of Poly­(vinylidene fluoride) J. Phys. Chem. B. 2012;116:7379–7388. doi: 10.1021/jp3043494. PubMed DOI

Navarro Oliva F. S., Sahihi M., Lenglet L., Ospina A., Guenin E., Jaramillo-Botero A., Goddard W. A., Bedoui F.. Nanoparticle size and surface chemistry effects on mechanical and physical properties of nano-reinforced polymers: The case of PVDF-Fe3O4 nano-composites. Polym. Test. 2023;117:107851. doi: 10.1016/j.polymertesting.2022.107851. DOI

Hinckley A. C., Wang C., Pfattner R., Kong D., Zhou Y., Ecker B., Gao Y., Bao Z.. Investigation of a Solution-Processable, Nonspecific Surface Modifier for Low Cost, High Work Function Electrodes. ACS Appl. Mater. Interfaces. 2016;8:19658–19664. doi: 10.1021/acsami.6b05348. PubMed DOI

Kim K., Seomoon K.. A study on the corona-treated PVdF films with alkyl methacrylate monomer as a coupling agent. J. Ind. Eng. Chem. 2017;47:150–153. doi: 10.1016/j.jiec.2016.11.026. DOI

Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L.. et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers (Basel). 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC

Kaspar P., Sobola D., Částková K., Dallaev R., Št’astná E., Sedlák P., Knápek A., Trčka T., Holcman V.. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials (Basel). 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC

Yuan D., Li Z., Thitsartarn W., Fan X., Sun J., Li H., He C.. β phase PVDF-hfp induced by mesoporous SiO 2 nanorods: synthesis and formation mechanism. J. Mater. Chem. C. 2015;3:3708–3713. doi: 10.1039/C5TC00005J. DOI

Gopal S. V., Mini R., Jothy V. B., Joe I. H.. Synthesis and Characterization of Iron Oxide Nanoparticles using DMSO as a Stabilizer. Mater. Today Proc. 2015;2:1051–1055. doi: 10.1016/j.matpr.2015.06.036. DOI

Chen W., Zhang Q., Zhang Y., Han C., Wu J., Gao J., Zhu X.-D., Zhang Y.-C.. Construction of amorphous/crystalline Fe doped CoSe for effective electrocatalytic oxygen evolution. Chem. Commun. 2024;60:4930–4933. doi: 10.1039/D4CC00866A. PubMed DOI

Ma C., Su J., Zhang Y., Guo Q., Li B., Wang J.. A bifunctional double-layer Fe3O4-Polyvinylidene fluoride­(PVDF)/PVDF separator with enhanced thermal stability for Li-S batteries. Colloids Surfaces A Physicochem. Eng. Asp. 2024;694:133970. doi: 10.1016/j.colsurfa.2024.133970. DOI

Grosvenor A. P., Kobe B. A., Biesinger M. C., McIntyre N. S.. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004;36:1564–1574. doi: 10.1002/sia.1984. DOI

Abdulagatov A. I., Orudzhev F. F., Rabadanov M. K., Abdulagatov I. M.. Copper nanowire arrays surface wettability control using atomic layer deposition of TiO2. Russ. J. Appl. Chem. 2016;89:1265–1273. doi: 10.1134/S1070427216080085. DOI

Antipova V. N., Omelyanchik A. S., Sobolev K. V., Vorontsov S. A., Rabadanova A. A., Gyulakhmedov R. R., Schitz D. V., Orudzhev F. F., Levada E. V., Rodionova V. V.. Helium-Plasma Surface Modification of PVDF-Based Substrates for Biomedical Applications. Nanobiotechnology Reports. 2023;18:S186–S193. doi: 10.1134/S2635167623600967. DOI

Orudzhev F., Sobola D., Ramazanov S., Částková K., Papež N., Selimov D. A., Abdurakhmanov M., Shuaibov A., Rabadanova A., Gulakhmedov R.. et al. Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3Membrane. Polymers (Basel). 2023;15:246. doi: 10.3390/polym15010246. PubMed DOI PMC

Osaka N., Yanagi K., Saito H.. The optical transparency and structural change of quenched poly­(vinylidene fluoride) caused by cold-drawing. Polym. J. 2013;45:1033–1040. doi: 10.1038/pj.2013.26. DOI

Mishra P., Patnaik S., Parida K.. An overview of recent progress on noble metal modified magnetic Fe 3 O 4 for photocatalytic pollutant degradation and H 2 evolution. Catal. Sci. Technol. 2019;9:916–941. doi: 10.1039/C8CY02462F. DOI

Yamamoto T.. Effect of ultrasonic frequency on mass transfer of acoustic cavitation bubble. Chem. Eng. Sci. 2024;300:120654. doi: 10.1016/j.ces.2024.120654. DOI

Cui Y., Liu W., Chang L., Wang C., Pal S., Briscoe J., Wang Z.. Oxygen Vacancy-Mediated Microflower-like Bi 5 O 7 I for Reactive Oxygen Species Generation through Piezo-Photocoupling Effect. Inorg. Chem. 2025;64:1498–1510. doi: 10.1021/acs.inorgchem.4c04751. PubMed DOI

Li L., Lu S., Cao W., Zhu Q., Li R., Wei Y., Yang S., Wang C.. Band Gap Engineering and Lattice Distortion for Synergetic Tuning Optical Properties of NaNbO 3 toward Enhanced Piezo-photocatalytic Activity. Inorg. Chem. 2024;63:11745–11756. doi: 10.1021/acs.inorgchem.4c01306. PubMed DOI

Ashokkumar M., Lee J., Kentish S., Grieser F.. Bubbles in an acoustic field: An overview. Ultrason. Sonochem. 2007;14:470–475. doi: 10.1016/j.ultsonch.2006.09.016. PubMed DOI

Bößl F., Menzel V. C., Chatzisymeon E., Comyn T. P., Cowin P., Cobley A. J., Tudela I.. Effect of frequency and power on the piezocatalytic and sonochemical degradation of dyes in water. Chem. Eng. J. Adv. 2023;14:100477. doi: 10.1016/j.ceja.2023.100477. DOI

Mansingh S., Priyadarshini N., Panda J., Das K. K., Sahoo D. P., Sahu J., Prusty D., Giri R. K., Mishra A., Parida K.. Recent Advancement in Piezopolarization Induced Photocatalytic H 2 O 2 Production: Fundamentals, Theoretical Insights, and Future Endeavors. Energy Fuels. 2024;38:5632–5658. doi: 10.1021/acs.energyfuels.3c04885. DOI

Lv H., Liu Y., Zhou J., Bai Y., Shi H., Yue B., Shen S., Yu D.-G.. Efficient piezophotocatalysis of ZnO@PVDF coaxial nanofibers modified with BiVO4 and Ag for the simultaneous generation of H2O2 and removal of pefloxacin and Cr­(VI) in water. Chem. Eng. J. 2024;484:149514. doi: 10.1016/j.cej.2024.149514. DOI

Xia C., Xia Y., Zhu P., Fan L., Wang H.. Direct electrosynthesis of pure aqueous H 2 O 2 solutions up to 20% by weight using a solid electrolyte. Science (80-.). 2019;366:226–231. doi: 10.1126/science.aay1844. PubMed DOI

Rabadanova A. A., Selimov D. A., Shuaibov A. O., Alikhanov N.M.-R., Suleymanov S. I., Shishov A. Y., Salnikov V. D., Sangamesha M. A., Giraev K. M., Bamatov I. M.. et al. Smart multi-stimuli responsive magneto-piezoelectric composite material based on PVDF and BiFeO3 nanoparticles for catalysis and energy harvesting. Polymer (Guildf). 2025;324:128241. doi: 10.1016/j.polymer.2025.128241. DOI

Omelyanchik A., Kamzin A. S., Valiullin A. A., Semenov V. G., Vereshchagin S. N., Volochaev M., Dubrovskiy A., Sviridova T., Kozenkov I., Dolan E.. et al. Iron oxide nanoparticles synthesized by a glycine-modified coprecipitation method: Structure and magnetic properties. Colloids Surfaces A Physicochem. Eng. Asp. 2022;647:129090. doi: 10.1016/j.colsurfa.2022.129090. DOI

Tianhui L., Aga-Tagieva S., Omelyanchik A., Xiaozhou Z., Lu H., Levada K., Rodionova V., Magomedov K.. Methyl orange sorption on octadecylamine-modified iron oxide magnetic nanoparticles. Chim. Techno Acta. 2024;11:202411305. doi: 10.15826/chimtech.2024.11.3.05. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...