Piezophotocatalytic Activity of PVDF/Fe3O4 Nanofibers: Effect of Ultrasound Frequency and Light Source on the Decomposition of Methylene Blue
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40521515
PubMed Central
PMC12163643
DOI
10.1021/acsomega.5c01092
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study investigates the piezophotocatalytic (PPhC) performance of electrospun nanofibrous membranes composed of polyvinylidene fluoride (PVDF) and magnetite (Fe3O4) nanoparticles. The composite membranes were synthesized via electrospinning, with optimized parameters to promote β-phase crystallinity and uniform fiber morphology. Structural and phase analyses by SEM, FTIR, Raman, and XPS confirmed the predominance of the electroactive β-phase (99.8%) in the composite, as well as strong interfacial interaction between Fe3O4 and the PVDF matrix. The composites exhibited significantly enhanced surface hydrophilicity and piezoelectric response compared to pristine PVDF. The piezoelectric potential generation was confirmed using a flexible piezoelectric nanogenerator (PENG), where a 3 × 1 cm membrane generated output voltages up to ∼2 V under periodic mechanical deformation at 4 Hz. Photocatalytic and piezophotocatalytic degradation of methylene blue (MB) was carried out under UV and visible light at varying ultrasonic frequencies. Maximum PPhC efficiency was achieved at 40 kHz, with 93% dye degradation in 60 min and a reaction rate constant exceeding the sum of photocatalysis and piezocatalysis by 13%, indicating a pronounced synergistic effect. Reactive oxygen species trapping and fluorescence spectroscopy confirmed •OH as the dominant oxidant. H2O2 productivity under PPhC reached 1700 μmol·g-1·h-1 in pure water, with a light-to-chemical energy conversion efficiency of 0.26%. Additionally, experiments conducted under an alternating magnetic field (0.3 T, 1.3 Hz) demonstrated 50% MB degradation within 240 min, revealing the contribution of magnetoelectric coupling as an alternative catalytic activation mechanism. The results suggest that PVDF/Fe3O4 nanocomposites are highly promising for multifunctional catalytic applications, combining piezoelectric, photo-, and magnetoelectric activation for efficient water purification and green oxidant production.
Zobrazit více v PubMed
Shannon M. A., Bohn P. W., Elimelech M., Georgiadis J. G., Mariñas B. J., Mayes A. M.. Science and technology for water purification in the coming decades. Nature. 2008;452:301–310. doi: 10.1038/nature06599. PubMed DOI
Somma S., Reverchon E., Baldino L.. Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. ChemEngineering. 2021;5:47. doi: 10.3390/chemengineering5030047. DOI
Dhamorikar R. S., Lade V. G., Kewalramani P. V., Bindwal A. B.. Review on integrated advanced oxidation processes for water and wastewater treatment. J. Ind. Eng. Chem. 2024;138:104–122. doi: 10.1016/j.jiec.2024.04.037. DOI
Isaev A. B., Shabanov N. S., Magomedova A. G., Nidheesh P. V., Oturan M. A.. Electrochemical oxidation of azo dyes in water: a review. Environ. Chem. Lett. 2023;21:2863–2911. doi: 10.1007/s10311-023-01610-5. DOI
Orudzhev F. F., Aliev Z. M., Gasanova F. G., Isaev A. B., Shabanov N. S.. Photoelectrocatalytic oxidation of phenol on TiO2 nanotubes under oxygen pressure. Russ. J. Electrochem. 2015;51:1108–1114. doi: 10.1134/S1023193515110130. DOI
Koe W. S., Lee J. W., Chong W. C., Pang Y. L., Sim L. C.. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020;27:2522–2565. doi: 10.1007/s11356-019-07193-5. PubMed DOI
Jing L., Xu Y., Xie M., Li Z., Wu C., Zhao H., Wang J., Wang H., Yan Y., Zhong N.. et al. Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects. Nano Energy. 2023;112:108508. doi: 10.1016/j.nanoen.2023.108508. DOI
Rabadanova A., Abdurakhmanov M., Gulakhmedov R., Shuaibov A., Selimov D., Sobola D., Částková K., Ramazanov S., Orudzhev F.. Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane. Chim. Techno Acta. 2022;9:20229420. doi: 10.15826/chimtech.2022.9.4.20. DOI
Orudzhev F. F., Sobola D. S., Ramazanov S. M., Častková K., Selimov D. A., Rabadanova A. A., Shuaibov A. O., Gulakhmedov R. R., Abdurakhmanov M. G., Giraev K. M.. Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers. Polymers (Basel). 2023;15:3252. doi: 10.3390/polym15153252. PubMed DOI PMC
Orudzhev F., Selimov D., Rabadanova A., Shuaibov A., Abdurakhamanov M., Gulakhmedov R., Papež N., Ramazanov S., Zvereva I., Částková K.. 1D/2D Electrospun Polyvinylidene Fluoride Nanofibers/Carbon Flakes Hybrid Nonmetal Polymeric Photo- and Piezocatalyst. ChemistrySelect. 2023;8:e202303318. doi: 10.1002/slct.202303318. DOI
Wang H., Fu Q., Luo J., Zhao D., Luo L., Li W.. Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor. Appl. Phys. Lett. 2017;110:242902. doi: 10.1063/1.4986443. DOI
Jayakumar O. D., Abdelhamid E. H., Kotari V., Mandal B. P., Rao R., Jagannath J., Naik V. M., Naik R., Tyagi A. K.. Fabrication of flexible and self-standing inorganic–organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe 3 O 4 nanoparticles. Dalt. Trans. 2015;44:15872–15881. doi: 10.1039/C5DT01509J. PubMed DOI
Magomedova A., Isaev A., Orudzhev F., Alikhanov N., Emirov R., Rabadanov M., Mingshan Z.. Electrochemical Synthesis of Superparamagnetic Fe3O4 Nanoparticles for the Photo-Fenton oxidation of Rhodamine B. ChemistrySelect. 2023;8:e202301694. doi: 10.1002/slct.202301694. DOI
Magomedova A., Isaev A., Orudzhev F., Sobola D., Murtazali R., Rabadanova A., Shabanov N. S., Zhu M., Emirov R., Gadzhimagomedov S.. et al. Magnetically Separable Mixed-Phase α/γ-Fe2O3 Catalyst for Photo-Fenton-like Oxidation of Rhodamine B. Catalysts. 2023;13:872. doi: 10.3390/catal13050872. DOI
Zhou T., Wu X., Mao J., Zhang Y., Lim T.-T.. Rapid degradation of sulfonamides in a novel heterogeneous sonophotochemical magnetite-catalyzed Fenton-like (US/UV/Fe3O4/oxalate) system. Appl. Catal. B Environ. 2014;160–161:325–334. doi: 10.1016/j.apcatb.2014.05.036. DOI
Huang R., Fang Z., Fang X., Tsang E. P.. Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor. J. Colloid Interface Sci. 2014;436:258–266. doi: 10.1016/j.jcis.2014.08.035. PubMed DOI
Zhang M., Liu C., Li B., Shen Y., Wang H., Ji K., Mao X., Wei L., Sun R., Zhou F.. Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. Nanoscale Adv. 2023;5:1043–1059. doi: 10.1039/D2NA00773H. PubMed DOI PMC
Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D.. et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI
Qiu P., Park B., Choi J., Thokchom B., Pandit A. B., Khim J.. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 2018;45:29–49. doi: 10.1016/j.ultsonch.2018.03.003. PubMed DOI
Amaniampong P. N., Jérôme F.. Catalysis under ultrasonic irradiation: a sound synergy. Curr. Opin. Green Sustain. Chem. 2020;22:7–12. doi: 10.1016/j.cogsc.2019.11.002. DOI
Pirsaheb M., Moradi N.. Sonochemical degradation of pesticides in aqueous solution: investigation on the influence of operating parameters and degradation pathway – a systematic review. RSC Adv. 2020;10:7396–7423. doi: 10.1039/C9RA11025A. PubMed DOI PMC
Babu, S. G. ; Neppolian, B. ; Ashokkumar, M. . Ultrasound-Assisted Synthesis of Nanoparticles for Energy and Environmental Applications. In Handbook of Ultrasonics and Sonochemistry; Springer Singapore: Singapore, 2015; pp 1–34.
Hung H.-M., Hoffmann M. R.. Kinetics and Mechanism of the Sonolytic Degradation of Chlorinated Hydrocarbons: Frequency Effects. J. Phys. Chem. A. 1999;103:2734–2739. doi: 10.1021/jp9845930. DOI
Cai X., Lei T., Sun D., Lin L.. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Salimi A., Yousefi A. A.. Analysis Method. Polym. Test. 2003;22:699–704. doi: 10.1016/S0142-9418(03)00003-5. DOI
Chipara D. M., Trevino A., Lozano K., Hoke B., Martirosyan K. S., Chipara M.. PVDF-Fe3O4 nanocomposites: spectroscopic investigations. J. Polym. Res. 2022;29:212. doi: 10.1007/s10965-022-03045-y. DOI
Jiang P., Lu J., Li K., Chen X., Dan R.. Research on hydrophobicity of electrospun Fe 3 O 4 /PVDF nanofiber membranes under different preparation conditions. Fullerenes, Nanotub. Carbon Nanostructures. 2020;28:381–386. doi: 10.1080/1536383X.2019.1687453. DOI
Yang D. C., Thomas E. L.. On the α -> β transition by deformation of highly oriented poly(vinylidene fluoride) J. Mater. Sci. Lett. 1984;3:929–936. doi: 10.1007/BF00719591. DOI
Wu Y., Hsu S. L., Honeker C., Bravet D. J., Williams D. S.. The Role of Surface Charge of Nucleation Agents on the Crystallization Behavior of Poly(vinylidene fluoride) J. Phys. Chem. B. 2012;116:7379–7388. doi: 10.1021/jp3043494. PubMed DOI
Navarro Oliva F. S., Sahihi M., Lenglet L., Ospina A., Guenin E., Jaramillo-Botero A., Goddard W. A., Bedoui F.. Nanoparticle size and surface chemistry effects on mechanical and physical properties of nano-reinforced polymers: The case of PVDF-Fe3O4 nano-composites. Polym. Test. 2023;117:107851. doi: 10.1016/j.polymertesting.2022.107851. DOI
Hinckley A. C., Wang C., Pfattner R., Kong D., Zhou Y., Ecker B., Gao Y., Bao Z.. Investigation of a Solution-Processable, Nonspecific Surface Modifier for Low Cost, High Work Function Electrodes. ACS Appl. Mater. Interfaces. 2016;8:19658–19664. doi: 10.1021/acsami.6b05348. PubMed DOI
Kim K., Seomoon K.. A study on the corona-treated PVdF films with alkyl methacrylate monomer as a coupling agent. J. Ind. Eng. Chem. 2017;47:150–153. doi: 10.1016/j.jiec.2016.11.026. DOI
Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L.. et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers (Basel). 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC
Kaspar P., Sobola D., Částková K., Dallaev R., Št’astná E., Sedlák P., Knápek A., Trčka T., Holcman V.. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials (Basel). 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC
Yuan D., Li Z., Thitsartarn W., Fan X., Sun J., Li H., He C.. β phase PVDF-hfp induced by mesoporous SiO 2 nanorods: synthesis and formation mechanism. J. Mater. Chem. C. 2015;3:3708–3713. doi: 10.1039/C5TC00005J. DOI
Gopal S. V., Mini R., Jothy V. B., Joe I. H.. Synthesis and Characterization of Iron Oxide Nanoparticles using DMSO as a Stabilizer. Mater. Today Proc. 2015;2:1051–1055. doi: 10.1016/j.matpr.2015.06.036. DOI
Chen W., Zhang Q., Zhang Y., Han C., Wu J., Gao J., Zhu X.-D., Zhang Y.-C.. Construction of amorphous/crystalline Fe doped CoSe for effective electrocatalytic oxygen evolution. Chem. Commun. 2024;60:4930–4933. doi: 10.1039/D4CC00866A. PubMed DOI
Ma C., Su J., Zhang Y., Guo Q., Li B., Wang J.. A bifunctional double-layer Fe3O4-Polyvinylidene fluoride(PVDF)/PVDF separator with enhanced thermal stability for Li-S batteries. Colloids Surfaces A Physicochem. Eng. Asp. 2024;694:133970. doi: 10.1016/j.colsurfa.2024.133970. DOI
Grosvenor A. P., Kobe B. A., Biesinger M. C., McIntyre N. S.. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004;36:1564–1574. doi: 10.1002/sia.1984. DOI
Abdulagatov A. I., Orudzhev F. F., Rabadanov M. K., Abdulagatov I. M.. Copper nanowire arrays surface wettability control using atomic layer deposition of TiO2. Russ. J. Appl. Chem. 2016;89:1265–1273. doi: 10.1134/S1070427216080085. DOI
Antipova V. N., Omelyanchik A. S., Sobolev K. V., Vorontsov S. A., Rabadanova A. A., Gyulakhmedov R. R., Schitz D. V., Orudzhev F. F., Levada E. V., Rodionova V. V.. Helium-Plasma Surface Modification of PVDF-Based Substrates for Biomedical Applications. Nanobiotechnology Reports. 2023;18:S186–S193. doi: 10.1134/S2635167623600967. DOI
Orudzhev F., Sobola D., Ramazanov S., Částková K., Papež N., Selimov D. A., Abdurakhmanov M., Shuaibov A., Rabadanova A., Gulakhmedov R.. et al. Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3Membrane. Polymers (Basel). 2023;15:246. doi: 10.3390/polym15010246. PubMed DOI PMC
Osaka N., Yanagi K., Saito H.. The optical transparency and structural change of quenched poly(vinylidene fluoride) caused by cold-drawing. Polym. J. 2013;45:1033–1040. doi: 10.1038/pj.2013.26. DOI
Mishra P., Patnaik S., Parida K.. An overview of recent progress on noble metal modified magnetic Fe 3 O 4 for photocatalytic pollutant degradation and H 2 evolution. Catal. Sci. Technol. 2019;9:916–941. doi: 10.1039/C8CY02462F. DOI
Yamamoto T.. Effect of ultrasonic frequency on mass transfer of acoustic cavitation bubble. Chem. Eng. Sci. 2024;300:120654. doi: 10.1016/j.ces.2024.120654. DOI
Cui Y., Liu W., Chang L., Wang C., Pal S., Briscoe J., Wang Z.. Oxygen Vacancy-Mediated Microflower-like Bi 5 O 7 I for Reactive Oxygen Species Generation through Piezo-Photocoupling Effect. Inorg. Chem. 2025;64:1498–1510. doi: 10.1021/acs.inorgchem.4c04751. PubMed DOI
Li L., Lu S., Cao W., Zhu Q., Li R., Wei Y., Yang S., Wang C.. Band Gap Engineering and Lattice Distortion for Synergetic Tuning Optical Properties of NaNbO 3 toward Enhanced Piezo-photocatalytic Activity. Inorg. Chem. 2024;63:11745–11756. doi: 10.1021/acs.inorgchem.4c01306. PubMed DOI
Ashokkumar M., Lee J., Kentish S., Grieser F.. Bubbles in an acoustic field: An overview. Ultrason. Sonochem. 2007;14:470–475. doi: 10.1016/j.ultsonch.2006.09.016. PubMed DOI
Bößl F., Menzel V. C., Chatzisymeon E., Comyn T. P., Cowin P., Cobley A. J., Tudela I.. Effect of frequency and power on the piezocatalytic and sonochemical degradation of dyes in water. Chem. Eng. J. Adv. 2023;14:100477. doi: 10.1016/j.ceja.2023.100477. DOI
Mansingh S., Priyadarshini N., Panda J., Das K. K., Sahoo D. P., Sahu J., Prusty D., Giri R. K., Mishra A., Parida K.. Recent Advancement in Piezopolarization Induced Photocatalytic H 2 O 2 Production: Fundamentals, Theoretical Insights, and Future Endeavors. Energy Fuels. 2024;38:5632–5658. doi: 10.1021/acs.energyfuels.3c04885. DOI
Lv H., Liu Y., Zhou J., Bai Y., Shi H., Yue B., Shen S., Yu D.-G.. Efficient piezophotocatalysis of ZnO@PVDF coaxial nanofibers modified with BiVO4 and Ag for the simultaneous generation of H2O2 and removal of pefloxacin and Cr(VI) in water. Chem. Eng. J. 2024;484:149514. doi: 10.1016/j.cej.2024.149514. DOI
Xia C., Xia Y., Zhu P., Fan L., Wang H.. Direct electrosynthesis of pure aqueous H 2 O 2 solutions up to 20% by weight using a solid electrolyte. Science (80-.). 2019;366:226–231. doi: 10.1126/science.aay1844. PubMed DOI
Rabadanova A. A., Selimov D. A., Shuaibov A. O., Alikhanov N.M.-R., Suleymanov S. I., Shishov A. Y., Salnikov V. D., Sangamesha M. A., Giraev K. M., Bamatov I. M.. et al. Smart multi-stimuli responsive magneto-piezoelectric composite material based on PVDF and BiFeO3 nanoparticles for catalysis and energy harvesting. Polymer (Guildf). 2025;324:128241. doi: 10.1016/j.polymer.2025.128241. DOI
Omelyanchik A., Kamzin A. S., Valiullin A. A., Semenov V. G., Vereshchagin S. N., Volochaev M., Dubrovskiy A., Sviridova T., Kozenkov I., Dolan E.. et al. Iron oxide nanoparticles synthesized by a glycine-modified coprecipitation method: Structure and magnetic properties. Colloids Surfaces A Physicochem. Eng. Asp. 2022;647:129090. doi: 10.1016/j.colsurfa.2022.129090. DOI
Tianhui L., Aga-Tagieva S., Omelyanchik A., Xiaozhou Z., Lu H., Levada K., Rodionova V., Magomedov K.. Methyl orange sorption on octadecylamine-modified iron oxide magnetic nanoparticles. Chim. Techno Acta. 2024;11:202411305. doi: 10.15826/chimtech.2024.11.3.05. DOI