Mitigating In-Column Artificial Modifications in High-Temperature LC-MS for Bottom-Up Proteomics and Quality Control of Protein Biopharmaceuticals

. 2024 Sep 10 ; 96 (36) : 14531-14540. [epub] 20240828

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39196537

Elevating the column temperature is an effective strategy for improving the chromatographic separation of peptides. However, high temperatures induce artificial modifications that compromise the quality of the peptide analysis. Here, we present a novel high-temperature LC-MS method that retains the benefits of a high column temperature while significantly reducing peptide modification and degradation during reversed-phase liquid chromatography. Our approach leverages a short inline trap column maintained at a near-ambient temperature installed upstream of a separation column. The retentivity and dimensions of the trap column were optimized to shorten the residence time of peptides in the heated separation column without compromising the separation performance. This easy-to-implement approach increased peak capacity by 1.4-fold within a 110 min peptide mapping of trastuzumab and provided 10% more peptide identifications in exploratory LC-MS proteomic analyses compared with analyses conducted at 30 °C while maintaining the extent of modifications close to the background level. In the peptide mapping of biopharmaceuticals, where in-column modifications can falsely elevate the levels of some critical quality attributes, the method reduced temperature-related artifacts by 66% for N-terminal pyroGlu and 63% for oxidized Met compared to direct injection at 60 °C, thus improving reliability in quality control of protein drugs. Our findings represent a promising advancement in LC-MS methodology, providing researchers and industry professionals with a valuable tool for improving the chromatographic separation of peptides while significantly reducing the unwanted modifications.

Zobrazit více v PubMed

Aebersold R.; Mann M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537 (7620), 347–355. 10.1038/nature19949. PubMed DOI

Yang F.; Zhang J.; Buettner A.; Vosika E.; Sadek M.; Hao Z.; Reusch D.; Koenig M.; Chan W.; Bathke A.; et al. Mass spectrometry-based multi-attribute method in protein therapeutics product quality monitoring and quality control. MAbs 2023, 15 (1), 219766810.1080/19420862.2023.2197668. PubMed DOI PMC

Lenčo J.; Jadeja S.; Naplekov D. K.; Krokhin O. V.; Khalikova M. A.; Chocholouš P.; Urban J.; Broeckhoven K.; Nováková L.; Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J. Proteome Res. 2022, 21 (12), 2846–2892. 10.1021/acs.jproteome.2c00407. PubMed DOI

Lenčo J.; Šemlej T.; Khalikova M. A.; Fabrik I.; Švec F. Sense and Nonsense of Elevated Column Temperature in Proteomic Bottom-up LC-MS Analyses. J. Proteome Res. 2021, 20 (1), 420–432. 10.1021/acs.jproteome.0c00479. PubMed DOI

Speers A. E.; Blackler A. R.; Wu C. C. Shotgun Analysis of Integral Membrane Proteins Facilitated by Elevated Temperature. Anal. Chem. 2007, 79 (12), 4613–4620. 10.1021/ac0700225. PubMed DOI

Farias S. E.; Kline K. G.; Klepacki J.; Wu C. C. Quantitative Improvements in Peptide Recovery at Elevated Chromatographic Temperatures from Microcapillary Liquid Chromatography–Mass Spectrometry Analyses of Brain Using Selected Reaction Monitoring. Anal. Chem. 2010, 82 (9), 3435–3440. 10.1021/ac100359p. PubMed DOI PMC

Gesquiere J. C.; Diesis E.; Cung M. T.; Tartar A. Slow isomerization of some proline-containing peptides inducing peak splitting during reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1989, 478 (1), 121–129. 10.1016/S0021-9673(01)84378-8. DOI

Villacrés C.; Mizero B.; Spicer V.; Viner R.; Saba J.; Patel B.; Snovida S.; Jensen P.; Huhmer A.; Krokhin O. V. Toward an Ultimate Solution for Peptide Retention Time Prediction: The Effect of Column Temperature on Separation Selectivity. J. Proteome Res. 2024, 23 (4), 1488–1494. 10.1021/acs.jproteome.4c00018. PubMed DOI

Heinisch S.; Rocca J. L. Sense and nonsense of high-temperature liquid chromatography. J. Chromatogr. A 2009, 1216 (4), 642–658. 10.1016/j.chroma.2008.11.079. PubMed DOI

Krokhin O. V.; Ens W.; Standing K. G. Characterizing degradation products of peptides containing N-terminal Cys residues by (off-line high-performance liquid chromatography)/matrix-assisted laser desorption/ionization quadrupole time-of-flight measurements. Rapid Commun. Mass Spectrom. 2003, 17 (22), 2528–2534. 10.1002/rcm.1236. PubMed DOI PMC

Zang L.; Carlage T.; Murphy D.; Frenkel R.; Bryngelson P.; Madsen M.; Lyubarskaya Y. Residual metals cause variability in methionine oxidation measurements in protein pharmaceuticals using LC-UV/MS peptide mapping. J. Chromatogr. B 2012, 895–896, 71–76. 10.1016/j.jchromb.2012.03.016. PubMed DOI

Baumans F.; Hanozin E.; Baiwir D.; Decroo C.; Wattiez R.; De Pauw E.; Eppe G.; Mazzucchelli G. Liquid chromatography setup-dependent artefactual methionine oxidation of peptides: The importance of an adapted quality control process. J. Chromatogr. A 2021, 1654, 46244910.1016/j.chroma.2021.462449. PubMed DOI

Mautz B.; König M.; Larraillet V.; Mo̷lho̷j M. Monitoring of On-column Methionine Oxidation as Part of a System Suitability Test During UHPLC–MS/MS Peptide Mapping. LCGC Suppl. 2019, 37 (11), 8–13.

Stadtman E. R.; Van Remmen H.; Richardson A.; Wehr N. B.; Levine R. L. Methionine oxidation and aging. Biochim. Biophys. Acta 2005, 1703 (2), 135–140. 10.1016/j.bbapap.2004.08.010. PubMed DOI

Moro M. L.; Phillips A. S.; Gaimster K.; Paul C.; Mudher A.; Nicoll J. A. R.; Boche D. Pyroglutamate and Isoaspartate modified Amyloid-Beta in ageing and Alzheimer’s disease. Acta Neuropathol. Commun. 2018, 6 (1), 3.10.1186/s40478-017-0505-x. PubMed DOI PMC

Szyrwiel L.; Gille C.; Mülleder M.; Demichev V.; Ralser M. Fast proteomics with dia-PASEF and analytical flow-rate chromatography. Proteomics 2024, 24 (1–2), 230010010.1002/pmic.202300100. PubMed DOI

Bian Y.; Zheng R.; Bayer F. P.; Wong C.; Chang Y.-C.; Meng C.; Zolg D. P.; Reinecke M.; Zecha J.; Wiechmann S.; et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat. Commun. 2020, 11 (1), 157.10.1038/s41467-019-13973-x. PubMed DOI PMC

Bian Y.; Gao C.; Kuster B. On the potential of micro-flow LC-MS/MS in proteomics. Expert Rev. Proteomics 2022, 19 (3), 153–164. 10.1080/14789450.2022.2134780. PubMed DOI

Lenčo J.; Vajrychová M.; Pimková K.; Prokšová M.; Benková M.; Klimentová J.; Tambor V.; Soukup O. Conventional-Flow Liquid Chromatography–Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses. Anal. Chem. 2018, 90 (8), 5381–5389. 10.1021/acs.analchem.8b00525. PubMed DOI

Millan-Martin S.; Jakes C.; Carillo S.; Buchanan T.; Guender M.; Kristensen D. B.; Sloth T. M.; Orgaard M.; Cook K.; Bones J. Inter-laboratory study of an optimized peptide mapping workflow using automated trypsin digestion for monitoring monoclonal antibody product quality attributes. Anal. Bioanal. Chem. 2020, 412 (25), 6833–6848. 10.1007/s00216-020-02809-z. PubMed DOI PMC

Dolan J. W. Column protection: Three easy steps. LCGC North Am. 2014, 32 (12), 916–920.

Young C.; Podtelejnikov A. V.; Nielsen M. L. Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature. J. Proteome Res. 2017, 16 (6), 2307–2317. 10.1021/acs.jproteome.6b01055. PubMed DOI

Escher C.; Reiter L.; MacLean B.; Ossola R.; Herzog F.; Chilton J.; MacCoss M. J.; Rinner O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 2012, 12 (8), 1111–1121. 10.1002/pmic.201100463. PubMed DOI PMC

Wang S.; Xing T.; Liu A. P.; He Z.; Yan Y.; Daly T. J.; Li N. Simple Approach for Improved LC-MS Analysis of Protein Biopharmaceuticals via Modification of Desolvation Gas. Anal. Chem. 2019, 91 (4), 3156–3162. 10.1021/acs.analchem.8b05846. PubMed DOI

Deutsch E. W.; Bandeira N.; Perez-Riverol Y.; Sharma V.; Carver J. J.; Mendoza L.; Kundu D. J.; Wang S.; Bandla C.; Kamatchinathan S.; et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 2023, 51 (D1), D1539–D1548. 10.1093/nar/gkac1040. PubMed DOI PMC

MacLean B.; Tomazela D. M.; Shulman N.; Chambers M.; Finney G. L.; Frewen B.; Kern R.; Tabb D. L.; Liebler D. C.; MacCoss M. J. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26 (7), 966–968. 10.1093/bioinformatics/btq054. PubMed DOI PMC

Wishart D. S.; Feunang Y. D.; Guo A. C.; Lo E. J.; Marcu A.; Grant J. R.; Sajed T.; Johnson D.; Li C.; Sayeeda Z.; et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46 (D1), D1074–D1082. 10.1093/nar/gkx1037. PubMed DOI PMC

Desmet G.; Broeckhoven K. Extra-column band broadening effects in contemporary liquid chromatography: Causes and solutions. TrAC Trends Anal. Chem. 2019, 119, 11561910.1016/j.trac.2019.115619. DOI

Fountain K. J.; Neue U. D.; Grumbach E. S.; Diehl D. M. Effects of extra-column band spreading, liquid chromatography system operating pressure, and column temperature on the performance of sub-2-μm porous particles. J. Chromatogr. A 2009, 1216 (32), 5979–5988. 10.1016/j.chroma.2009.06.044. PubMed DOI

Poppe H.; Kraak J. C.; Huber J. F. K.; van den Berg J. H. M. Temperature gradients in HPLC columns due to viscous heat dissipation. Chromatographia 1981, 14 (9), 515–523. 10.1007/BF02265631. DOI

Poppe H.; Kraak J. C. Influence of thermal conditions on the efficiency of high-performance liquid chromatographic columns. J. Chromatogr. A 1983, 282, 399–412. 10.1016/S0021-9673(00)91617-0. DOI

Wolcott R. G.; Dolan J. W.; Snyder L. R.; Bakalyar S. R.; Arnold M. A.; Nichols J. A. Control of column temperature in reversed-phase liquid chromatography. J. Chromatogr. A 2000, 869 (1), 211–230. 10.1016/S0021-9673(99)00894-8. PubMed DOI

Yan B.; Zhao J.; Brown J. S.; Blackwell J.; Carr P. W. High-Temperature Ultrafast Liquid Chromatography. Anal. Chem. 2000, 72 (6), 1253–1262. 10.1021/ac991008y. PubMed DOI

Lauber M. A.; Koza S. M.; McCall S. A.; Alden B. A.; Iraneta P. C.; Fountain K. J. High-resolution peptide mapping separations with MS-friendly mobile phases and charge-surface-modified C18. Anal. Chem. 2013, 85 (14), 6936–6944. 10.1021/ac401481z. PubMed DOI

Jadeja S.; Kupcik R.; Fabrik I.; Sklenářová H.; Lenčo J. A stationary phase with a positively charged surface allows for minimizing formic acid concentration in the mobile phase, enhancing electrospray ionization in LC-MS proteomic experiments. Analyst 2023, 148 (23), 5980–5990. 10.1039/D3AN01508D. PubMed DOI

Kadlecova Z.; Kozlik P.; Tesarova E.; Gilar M.; Kalikova K. Characterization and comparison of mixed-mode and reversed-phase columns; interaction abilities and applicability for peptide separation. J. Chromatogr. A 2021, 1648, 46218210.1016/j.chroma.2021.462182. PubMed DOI

Iraneta P. C.; Wyndham K. D.; McCabe D. R.; Walter T. H.. A Review of Waters Hybrid Particle Technology, Part 3, Charge Surface Hybrid (CSH) Technology and Its Use in Liquid Chromatography. Waters 2011.

DeLano M.; Walter T. H.; Lauber M. A.; Gilar M.; Jung M. C.; Nguyen J. M.; Boissel C.; Patel A. V.; Bates-Harrison A.; Wyndham K. D. Using Hybrid Organic-Inorganic Surface Technology to Mitigate Analyte Interactions with Metal Surfaces in UHPLC. Anal. Chem. 2021, 93 (14), 5773–5781. 10.1021/acs.analchem.0c05203. PubMed DOI

Lee J.; Kang H. A.; Bae J. S.; Kim K. D.; Lee K. H.; Lim K. J.; Choo M. J.; Chang S. J. Evaluation of analytical similarity between trastuzumab biosimilar CT-P6 and reference product using statistical analyses. MAbs 2018, 10 (4), 547–571. 10.1080/19420862.2018.1440170. PubMed DOI PMC

Liu Y. D.; Beardsley M. I.; Yang F. Expanding the Analytical Toolbox: Developing New Lys-C Peptide Mapping Methods with Minimized Assay-Induced Artifacts to Fully Characterize Antibodies. Pharmaceuticals 2023, 16 (9), 1327.10.3390/ph16091327. PubMed DOI PMC

Song Y. E.; Dubois H.; Hoffmann M.; Stephen D. E.; Fromentin Y.; Wiesner J.; Pfenninger A.; Clavier S.; Pieper A.; Duhau L.; Roth U. Automated mass spectrometry multi-attribute method analyses for process development and characterization of mAbs. J. Chromatogr. B 2021, 1166, 12254010.1016/j.jchromb.2021.122540. PubMed DOI

Xie H.; Chakraborty A.; Ahn J.; Yu Y. Q.; Dakshinamoorthy D. P.; Gilar M.; Chen W.; Skilton S. J.; Mazzeo J. R. Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MAbs 2010, 2 (4), 379–394. 10.4161/mabs.11986. PubMed DOI PMC

Hao Z.; Moore B.; Ren C.; Sadek M.; Macchi F.; Yang L.; Harris J.; Yee L.; Liu E.; Tran V.; et al. Multi-attribute method performance profile for quality control of monoclonal antibody therapeutics. J. Pharm. Biomed. Anal. 2021, 205, 11433010.1016/j.jpba.2021.114330. PubMed DOI

Li X.; Xu W.; Wang Y.; Zhao J.; Liu Y.-H.; Richardson D.; Li H.; Shameem M.; Yang X. High throughput peptide mapping method for analysis of site specific monoclonal antibody oxidation. J. Chromatogr. A 2016, 1460, 51–60. 10.1016/j.chroma.2016.06.085. PubMed DOI

Hada V.; Bagdi A.; Bihari Z.; Timari S. B.; Fizil A.; Szantay C. Jr. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J. Pharm. Biomed. Anal. 2018, 161, 214–238. 10.1016/j.jpba.2018.08.024. PubMed DOI

Wang D.; Nowak C.; Mason B.; Katiyar A.; Liu H. Analytical artifacts in characterization of recombinant monoclonal antibody therapeutics. J. Pharm. Biomed. Anal. 2020, 183, 11313110.1016/j.jpba.2020.113131. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...