Fano Factor: A Potentially Useful Information
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33328945
PubMed Central
PMC7718036
DOI
10.3389/fncom.2020.569049
Knihovny.cz E-zdroje
- Klíčová slova
- Fano factor, intensity, renewal process, spike trains, variability measure,
- Publikační typ
- časopisecké články MeSH
The Fano factor, defined as the variance-to-mean ratio of spike counts in a time window, is often used to measure the variability of neuronal spike trains. However, despite its transparent definition, careless use of the Fano factor can easily lead to distorted or even wrong results. One of the problems is the unclear dependence of the Fano factor on the spiking rate, which is often neglected or handled insufficiently. In this paper we aim to explore this problem in more detail and to study the possible solution, which is to evaluate the Fano factor in the operational time. We use equilibrium renewal and Markov renewal processes as spike train models to describe the method in detail, and we provide an illustration on experimental data.
Zobrazit více v PubMed
Adrian E. D., Zotterman Y. (1926). The impulses produced by sensory nerve endings. J. Physiol. 61, 465–483. 10.1113/jphysiol.1926.sp002308 PubMed DOI PMC
Aoki T., Takaguchi T., Kobayashi R., Lambiotte R. (2016). Input-output relationship in social communications characterized by spike train analysis. Phys. Rev. E 94:042313. 10.1103/PhysRevE.94.042313 PubMed DOI
Avila-Akerberg O., Chacron M. J. (2011). Nonrenewal spike train statistics: causes and functional consequences on neural coding. Exp. Brain Res. 210, 353–371. 10.1007/s00221-011-2553-y PubMed DOI PMC
Ball F., Milne R. K. (2005). Simple derivations of properties of counting processes associated with markov renewal processes. J. Appl. Probab. 42, 1031–1043. 10.1239/jap/1134587814 DOI
Benda J., Herz A. V. M. (2003). A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–2564. 10.1162/089976603322385063 PubMed DOI
Benedetto E., Polito F., Sacerdote L. (2015). On firing rate estimation for dependent interspike intervals. Neural Comput. 27, 699–724. 10.1162/NECO_a_00709 PubMed DOI
Bowden R. J. (2017). Distribution spread and location metrics using entropic separation. Stat. Probab. Lett. 124, 148–153. 10.1016/j.spl.2017.01.011 DOI
Bravi A., Longtin A., Seely A. J. E. (2011). Review and classification of variability analysis techniques with clinical applications. Biomed. Eng. Online 10:90. 10.1186/1475-925X-10-90 PubMed DOI PMC
Casella G., Berger R. L. (2002). Statistical Inference. Pacific Grove, CA: Thomson Learning Inc.
Chacron M. J., Longtin A., Maler L. (2001). Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J. Neurosci. 21, 5328–5343. 10.1523/JNEUROSCI.21-14-05328.2001 PubMed DOI PMC
Charles A. S., Park M., Weller J. P., Horwitz G. D., Pillow J. W. (2018). Dethroning the fano factor: a flexible, model-based approach to partitioning neural variability. Neural Comput. 30, 1012–1045. 10.1162/neco_a_01062 PubMed DOI PMC
Christodoulou C., Cleanthous A. (2011). Does high firing irregularity enhance learning? Neural Comput. 23, 656–663. 10.1162/NECO_a_00090 PubMed DOI
Churchland M. M., Yu B. M., Cunningham J. P., Sugrue L. P., Cohen M. R., Corrado G. S., et al. . (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neurosci. 13, 369–378. 10.1038/nn.2501 PubMed DOI PMC
Çinlar E. (1969). Markov renewal theory. Adv. Appl. Probab. 1, 123–187. 10.2307/1426216 DOI
Cox D. R. (1962). Renewal Theory. London: Methuen.
Cox D. R., Isham V. (1980). Point Processes. London; New York, NY: Chapman and Hall.
Cox D. R., Lewis P. A. W. (1966). The Statistical Analysis of Series of Events. London: Methuen.
Cunningham J. P., Gilja V., Ryu S. I., Shenoy K. V. (2009). Methods for estimating neural firing rates, and their application to brain–machine interfaces. Neural Netw. 22, 1235–1246. 10.1016/j.neunet.2009.02.004 PubMed DOI PMC
Dayan P., Abbott L. F. (2001). Theoretical Neuroscience. Cambridge, MA: MIT Press.
Fano U. (1947). Ionization yield of radiations. II. The fluctuations of the number of ions. Phys. Rev. 72, 26–29. 10.1103/PhysRev.72.26 DOI
Farkhooi F., Strube-Bloss M. F., Nawrot M. P. (2009). Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability. Phys. Rev. E 79:021905. 10.1103/PhysRevE.79.021905 PubMed DOI
Fisch K., Schwalger T., Lindner B., Herz A. V. M., Benda J. (2012). Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. J. Neurosci. 32, 17332–17344. 10.1523/JNEUROSCI.6231-11.2012 PubMed DOI PMC
Fullagar W. K., Paziresh M., Latham S. J., Myers G. R., Kingston A. M. (2017). The index of dispersion as a metric of quanta–unravelling the fano factor. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 73, 675–695. 10.1107/S2052520617009222 PubMed DOI
Ilan Y. (2020). Order through disorder: the characteristic variability of systems. Front. Cell Dev. Biol. 8:186. 10.3389/fcell.2020.00186 PubMed DOI PMC
Kohn A., Smith M. A. (2016). Utah Array Extracellular Recordings of Spontaneous and Visually Evoked Activity From Anesthetized Macaque Primary Visual Cortex (V1). Available online at: CRCNS.org.
Kostal L., Lansky P., Pokora O. (2013). Measures of statistical dispersion based on shannon and fisher information concepts. Inform. Sci. 235, 214–223. 10.1016/j.ins.2013.02.023 DOI
Kostal L., Lansky P., Rospars J.-P. (2007). Neuronal coding and spiking randomness. Eur. J. Neurosci. 26, 2693–2701. 10.1111/j.1460-9568.2007.05880.x PubMed DOI
Kostal L., Lansky P., Stiber M. (2018). Statistics of inverse interspike intervals: the instantaneous firing rate revisited. Chaos. 28:106305. 10.1063/1.5036831 PubMed DOI
Koyama S. (2015). On the spike train variability characterized by variance-to-mean power relationship. Neural Comput. 27, 1530–1548. 10.1162/NECO_a_00748 PubMed DOI
Koyama S., Kostal L. (2014). The effect of interspike interval statistics on the information gainunder the rate coding hypothesis. Math. Biosci. Eng. 11, 63–80. 10.3934/mbe.2014.11.63 PubMed DOI
Lansky P., Sacerdote L., Zucca C. (2016). The gamma renewal process as an output of the diffusion leaky integrate-and-fire neuronal model. Biol. Cybernet. 110, 193–200. 10.1007/s00422-016-0690-x PubMed DOI
Lindner B., Chacron M. J., Longtin A. (2005). Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. Phys. Rev. E 72:021911. 10.1103/PhysRevE.72.021911 PubMed DOI PMC
Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L. (2004). Effects of noise in excitable systems. Phys. Rep. 392, 321–424. 10.1016/j.physrep.2003.10.015 DOI
Nawrot M., Aertsen A., Rotter S. (1999). Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity. J. Neurosci. Methods 94, 81–92. 10.1016/S0165-0270(99)00127-2 PubMed DOI
Nawrot M. P. (2010). Analysis and interpretation of interval and count variability in neural spike trains, in Analysis of Parallel Spike Trains eds Grün S., Rotter S. (New York, NY: Springer US; ), 37–58. 10.1007/978-1-4419-5675-0_3 DOI
Nawrot M. P., Boucsein C., Molina V. R., Riehle A., Aertsen A., Rotter S. (2008). Measurement of variability dynamics in cortical spike trains. J. Neurosci. Methods 169, 374–390. 10.1016/j.jneumeth.2007.10.013 PubMed DOI
Olypher A. V., Klement D., Wesierska M., Fenton A. A. (2003). Inactivating one hippocampus with tetrodotoxin prevents place learning in dissociated reference frames by disturbing the uninjected hippocampus, in Sixth IBRO World Congress of Neuroscience (Prague: FENS; ) 1256.
Omi T., Shinomoto S. (2011). Optimizing time histograms for non-poissonian spike trains. Neural Comput. 23, 3125–3144. 10.1162/NECO_a_00213 PubMed DOI
Ostojic S. (2011). Interspike interval distributions of spiking neurons driven by fluctuating inputs. J. Neurophysiol. 106, 361–373. 10.1152/jn.00830.2010 PubMed DOI
Pawlas Z., Lansky P. (2011). Distribution of interspike intervals estimated from multiple spike trains observed in a short time window. Phys. Rev. E 83:011910. 10.1103/PhysRevE.83.011910 PubMed DOI
Perkel D. H., Bullock T. H. (1968). Neural coding. Neurosci. Res. Program Bull. 6, 221–348.
Peterson A. J., Heil P. (2018). A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hear. Res. 363, 1–27. 10.1016/j.heares.2017.09.005 PubMed DOI
Pipa G., Grün S., van Vreeswijk C. (2013). Impact of spike train autostructure on probability distribution of joint spike events. Neural Comput. 25, 1123–1163. 10.1162/NECO_a_00432 PubMed DOI
Rajdl K., Lansky P. (2014). Fano factor estimation. Math. Biosci. Eng. 11, 105–123. 10.3934/mbe.2014.11.105 PubMed DOI
Rajdl K., Lansky P., Kostal L. (2017). Entropy factor for randomness quantification in neuronal data. Neural Netw. 95, 57–65. 10.1016/j.neunet.2017.07.016 PubMed DOI
Rieke F., Warland D., de Ruyter van Steveninck R., Bialek W. (1999). Spikes: Exploring the Neural Code. Cambridge, MA: MIT Press.
Shadlen M. N., Newsome W. T. (1994). Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579. 10.1016/0959-4388(94)90059-0 PubMed DOI
Shimokawa T., Koyama S., Shinomoto S. (2010). A characterization of the time-rescaled gamma process as a model for spike trains. J. Comput. Neurosci. 29, 183–191. 10.1007/s10827-009-0194-y PubMed DOI
Shinomoto S., Miura K., Koyama S. (2005). A measure of local variation of inter-spike intervals. Biosystems 79, 67–72. 10.1016/j.biosystems.2004.09.023 PubMed DOI
Shuai J. W., Zeng S., Jung P. (2002). Coherence resonance: on the use and abuse of the fano factor. Fluctuat. Noise Lett. 2, L139–L146. 10.1142/S0219477502000749 DOI
Stein R. B., Gossen E. R., Jones K. E. (2005). Neuronal variability: noise or part of the signal? Nat. Rev. Neurosci. 6, 389–397. 10.1038/nrn1668 PubMed DOI
Stevenson I. H. (2016). Flexible models for spike count data with both over- and under-dispersion. J. Comput. Neurosci. 41, 29–43. 10.1007/s10827-016-0603-y PubMed DOI
Tomar R. (2019). Review: methods of firing rate estimation. Biosystems 183:103980. 10.1016/j.biosystems.2019.103980 PubMed DOI