Fano Factor: A Potentially Useful Information

. 2020 ; 14 () : 569049. [epub] 20201120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33328945

The Fano factor, defined as the variance-to-mean ratio of spike counts in a time window, is often used to measure the variability of neuronal spike trains. However, despite its transparent definition, careless use of the Fano factor can easily lead to distorted or even wrong results. One of the problems is the unclear dependence of the Fano factor on the spiking rate, which is often neglected or handled insufficiently. In this paper we aim to explore this problem in more detail and to study the possible solution, which is to evaluate the Fano factor in the operational time. We use equilibrium renewal and Markov renewal processes as spike train models to describe the method in detail, and we provide an illustration on experimental data.

Zobrazit více v PubMed

Adrian E. D., Zotterman Y. (1926). The impulses produced by sensory nerve endings. J. Physiol. 61, 465–483. 10.1113/jphysiol.1926.sp002308 PubMed DOI PMC

Aoki T., Takaguchi T., Kobayashi R., Lambiotte R. (2016). Input-output relationship in social communications characterized by spike train analysis. Phys. Rev. E 94:042313. 10.1103/PhysRevE.94.042313 PubMed DOI

Avila-Akerberg O., Chacron M. J. (2011). Nonrenewal spike train statistics: causes and functional consequences on neural coding. Exp. Brain Res. 210, 353–371. 10.1007/s00221-011-2553-y PubMed DOI PMC

Ball F., Milne R. K. (2005). Simple derivations of properties of counting processes associated with markov renewal processes. J. Appl. Probab. 42, 1031–1043. 10.1239/jap/1134587814 DOI

Benda J., Herz A. V. M. (2003). A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–2564. 10.1162/089976603322385063 PubMed DOI

Benedetto E., Polito F., Sacerdote L. (2015). On firing rate estimation for dependent interspike intervals. Neural Comput. 27, 699–724. 10.1162/NECO_a_00709 PubMed DOI

Bowden R. J. (2017). Distribution spread and location metrics using entropic separation. Stat. Probab. Lett. 124, 148–153. 10.1016/j.spl.2017.01.011 DOI

Bravi A., Longtin A., Seely A. J. E. (2011). Review and classification of variability analysis techniques with clinical applications. Biomed. Eng. Online 10:90. 10.1186/1475-925X-10-90 PubMed DOI PMC

Casella G., Berger R. L. (2002). Statistical Inference. Pacific Grove, CA: Thomson Learning Inc.

Chacron M. J., Longtin A., Maler L. (2001). Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J. Neurosci. 21, 5328–5343. 10.1523/JNEUROSCI.21-14-05328.2001 PubMed DOI PMC

Charles A. S., Park M., Weller J. P., Horwitz G. D., Pillow J. W. (2018). Dethroning the fano factor: a flexible, model-based approach to partitioning neural variability. Neural Comput. 30, 1012–1045. 10.1162/neco_a_01062 PubMed DOI PMC

Christodoulou C., Cleanthous A. (2011). Does high firing irregularity enhance learning? Neural Comput. 23, 656–663. 10.1162/NECO_a_00090 PubMed DOI

Churchland M. M., Yu B. M., Cunningham J. P., Sugrue L. P., Cohen M. R., Corrado G. S., et al. . (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neurosci. 13, 369–378. 10.1038/nn.2501 PubMed DOI PMC

Çinlar E. (1969). Markov renewal theory. Adv. Appl. Probab. 1, 123–187. 10.2307/1426216 DOI

Cox D. R. (1962). Renewal Theory. London: Methuen.

Cox D. R., Isham V. (1980). Point Processes. London; New York, NY: Chapman and Hall.

Cox D. R., Lewis P. A. W. (1966). The Statistical Analysis of Series of Events. London: Methuen.

Cunningham J. P., Gilja V., Ryu S. I., Shenoy K. V. (2009). Methods for estimating neural firing rates, and their application to brain–machine interfaces. Neural Netw. 22, 1235–1246. 10.1016/j.neunet.2009.02.004 PubMed DOI PMC

Dayan P., Abbott L. F. (2001). Theoretical Neuroscience. Cambridge, MA: MIT Press.

Fano U. (1947). Ionization yield of radiations. II. The fluctuations of the number of ions. Phys. Rev. 72, 26–29. 10.1103/PhysRev.72.26 DOI

Farkhooi F., Strube-Bloss M. F., Nawrot M. P. (2009). Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability. Phys. Rev. E 79:021905. 10.1103/PhysRevE.79.021905 PubMed DOI

Fisch K., Schwalger T., Lindner B., Herz A. V. M., Benda J. (2012). Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. J. Neurosci. 32, 17332–17344. 10.1523/JNEUROSCI.6231-11.2012 PubMed DOI PMC

Fullagar W. K., Paziresh M., Latham S. J., Myers G. R., Kingston A. M. (2017). The index of dispersion as a metric of quanta–unravelling the fano factor. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 73, 675–695. 10.1107/S2052520617009222 PubMed DOI

Ilan Y. (2020). Order through disorder: the characteristic variability of systems. Front. Cell Dev. Biol. 8:186. 10.3389/fcell.2020.00186 PubMed DOI PMC

Kohn A., Smith M. A. (2016). Utah Array Extracellular Recordings of Spontaneous and Visually Evoked Activity From Anesthetized Macaque Primary Visual Cortex (V1). Available online at: CRCNS.org.

Kostal L., Lansky P., Pokora O. (2013). Measures of statistical dispersion based on shannon and fisher information concepts. Inform. Sci. 235, 214–223. 10.1016/j.ins.2013.02.023 DOI

Kostal L., Lansky P., Rospars J.-P. (2007). Neuronal coding and spiking randomness. Eur. J. Neurosci. 26, 2693–2701. 10.1111/j.1460-9568.2007.05880.x PubMed DOI

Kostal L., Lansky P., Stiber M. (2018). Statistics of inverse interspike intervals: the instantaneous firing rate revisited. Chaos. 28:106305. 10.1063/1.5036831 PubMed DOI

Koyama S. (2015). On the spike train variability characterized by variance-to-mean power relationship. Neural Comput. 27, 1530–1548. 10.1162/NECO_a_00748 PubMed DOI

Koyama S., Kostal L. (2014). The effect of interspike interval statistics on the information gainunder the rate coding hypothesis. Math. Biosci. Eng. 11, 63–80. 10.3934/mbe.2014.11.63 PubMed DOI

Lansky P., Sacerdote L., Zucca C. (2016). The gamma renewal process as an output of the diffusion leaky integrate-and-fire neuronal model. Biol. Cybernet. 110, 193–200. 10.1007/s00422-016-0690-x PubMed DOI

Lindner B., Chacron M. J., Longtin A. (2005). Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. Phys. Rev. E 72:021911. 10.1103/PhysRevE.72.021911 PubMed DOI PMC

Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L. (2004). Effects of noise in excitable systems. Phys. Rep. 392, 321–424. 10.1016/j.physrep.2003.10.015 DOI

Nawrot M., Aertsen A., Rotter S. (1999). Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity. J. Neurosci. Methods 94, 81–92. 10.1016/S0165-0270(99)00127-2 PubMed DOI

Nawrot M. P. (2010). Analysis and interpretation of interval and count variability in neural spike trains, in Analysis of Parallel Spike Trains eds Grün S., Rotter S. (New York, NY: Springer US; ), 37–58. 10.1007/978-1-4419-5675-0_3 DOI

Nawrot M. P., Boucsein C., Molina V. R., Riehle A., Aertsen A., Rotter S. (2008). Measurement of variability dynamics in cortical spike trains. J. Neurosci. Methods 169, 374–390. 10.1016/j.jneumeth.2007.10.013 PubMed DOI

Olypher A. V., Klement D., Wesierska M., Fenton A. A. (2003). Inactivating one hippocampus with tetrodotoxin prevents place learning in dissociated reference frames by disturbing the uninjected hippocampus, in Sixth IBRO World Congress of Neuroscience (Prague: FENS; ) 1256.

Omi T., Shinomoto S. (2011). Optimizing time histograms for non-poissonian spike trains. Neural Comput. 23, 3125–3144. 10.1162/NECO_a_00213 PubMed DOI

Ostojic S. (2011). Interspike interval distributions of spiking neurons driven by fluctuating inputs. J. Neurophysiol. 106, 361–373. 10.1152/jn.00830.2010 PubMed DOI

Pawlas Z., Lansky P. (2011). Distribution of interspike intervals estimated from multiple spike trains observed in a short time window. Phys. Rev. E 83:011910. 10.1103/PhysRevE.83.011910 PubMed DOI

Perkel D. H., Bullock T. H. (1968). Neural coding. Neurosci. Res. Program Bull. 6, 221–348.

Peterson A. J., Heil P. (2018). A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hear. Res. 363, 1–27. 10.1016/j.heares.2017.09.005 PubMed DOI

Pipa G., Grün S., van Vreeswijk C. (2013). Impact of spike train autostructure on probability distribution of joint spike events. Neural Comput. 25, 1123–1163. 10.1162/NECO_a_00432 PubMed DOI

Rajdl K., Lansky P. (2014). Fano factor estimation. Math. Biosci. Eng. 11, 105–123. 10.3934/mbe.2014.11.105 PubMed DOI

Rajdl K., Lansky P., Kostal L. (2017). Entropy factor for randomness quantification in neuronal data. Neural Netw. 95, 57–65. 10.1016/j.neunet.2017.07.016 PubMed DOI

Rieke F., Warland D., de Ruyter van Steveninck R., Bialek W. (1999). Spikes: Exploring the Neural Code. Cambridge, MA: MIT Press.

Shadlen M. N., Newsome W. T. (1994). Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579. 10.1016/0959-4388(94)90059-0 PubMed DOI

Shimokawa T., Koyama S., Shinomoto S. (2010). A characterization of the time-rescaled gamma process as a model for spike trains. J. Comput. Neurosci. 29, 183–191. 10.1007/s10827-009-0194-y PubMed DOI

Shinomoto S., Miura K., Koyama S. (2005). A measure of local variation of inter-spike intervals. Biosystems 79, 67–72. 10.1016/j.biosystems.2004.09.023 PubMed DOI

Shuai J. W., Zeng S., Jung P. (2002). Coherence resonance: on the use and abuse of the fano factor. Fluctuat. Noise Lett. 2, L139–L146. 10.1142/S0219477502000749 DOI

Stein R. B., Gossen E. R., Jones K. E. (2005). Neuronal variability: noise or part of the signal? Nat. Rev. Neurosci. 6, 389–397. 10.1038/nrn1668 PubMed DOI

Stevenson I. H. (2016). Flexible models for spike count data with both over- and under-dispersion. J. Comput. Neurosci. 41, 29–43. 10.1007/s10827-016-0603-y PubMed DOI

Tomar R. (2019). Review: methods of firing rate estimation. Biosystems 183:103980. 10.1016/j.biosystems.2019.103980 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...