Correlation of Dielectric Properties and Vibrational Spectra of Composite PVDF/Salt Fibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FEKT-S-23-8228
Internal Grant Agency of Brno University of Technology
LM2018110
CEITEC Nano Research Infrastructure supported by MEYS CR
PubMed
39274045
PubMed Central
PMC11396973
DOI
10.3390/polym16172412
PII: polym16172412
Knihovny.cz E-zdroje
- Klíčová slova
- FTIR, PVDF, Raman spectroscopy, XRD, nitrate salt,
- Publikační typ
- časopisecké články MeSH
Nitride salts were added to polyvinylidene fluoride fibers and then the fiber mats were prepared by electrospinning. An experimental investigation of the structure was provided by Raman, FTIR, SEM, and XRD. The phase ratio of the polymer was studied both theoretically and experimentally in connection with the addition of the hydrates Mg(NO3)2, Ca(NO3)2, and Zn(NO3)2 salts. The comparison of simulated and experimental data for vibrational spectroscopies is discussed. We provide a comparison of triboelectric, dielectric, and compositional characterization of PVDF fibers doped with three types of nitride hydrates. Doping of PVDF fibers with magnesium nitrate hexahydrate leads to significant improvement of the triboelectric performance.
Zobrazit více v PubMed
Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D., et al. Ultrasound and Water Flow Driven Piezophototronic Effect in Self-Polarized Flexible α-Fe2O3 Containing PVDF Nanofibers Film for Enhanced Catalytic Oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI
Luo W., Wang Y., Hitz E., Lin Y., Yang B., Hu L., Luo W., Wang Y., Hitz E., Hu L., et al. Article Type: Feature Article Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications. Adv. Funct. Mater. 2017;27:1701450. doi: 10.1002/adfm.201701450. DOI
Hu Y., Kang W., Fang Y., Xie L., Qiu L., Jin T. Piezoelectric Poly(Vinylidene Fluoride) (PVDF) Polymer-Based Sensor for Wrist Motion Signal Detection. Appl. Sci. 2018;8:836. doi: 10.3390/app8050836. DOI
Mokhtari F., Cheng Z., Raad R., Xi J., Foroughi J. Piezofibers to Smart Textiles: A Review on Recent Advances and Future Outlook for Wearable Technology. J. Mater. Chem. A Mater. 2020;8:9496–9522. doi: 10.1039/D0TA00227E. DOI
Abednejad A., Ghaee A., Morais E.S., Sharma M., Neves B.M., Freire M.G., Nourmohammadi J., Mehrizi A.A. Polyvinylidene Fluoride–Hyaluronic Acid Wound Dressing Comprised of Ionic Liquids for Controlled Drug Delivery and Dual Therapeutic Behavior. Acta Biomater. 2019;100:142–157. doi: 10.1016/j.actbio.2019.10.007. PubMed DOI
Manh L.N., Li J., Kweon H., Chae Y. Simultaneous Measurement of Two Biological Signals Using a Multi-Layered Polyvinylidene Fluoride Sensor. Sci. Rep. 2022;12:1507. doi: 10.1038/s41598-022-05622-z. PubMed DOI PMC
Bauer F. PVDF Shock Sensors: Applications to Polar Materials and High Explosives. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000;47:1448–1454. doi: 10.1109/58.883534. PubMed DOI
Salem E.F., Na A., Ka E. Studying of Thermal and Shielding Properties of PVDF (PolyVinyliDene Fluoride) Pipes Used in Aqueous Solution Sector of the Nuclear Fuel Fabrication Facility Corresponding Authors. J. Mater. Sci. Manuf. Res. 2022;3:1–6. doi: 10.47363/JMSMR/2022(3)144. DOI
Orudzhev F.F., Sobola D.S., Ramazanov S.M., Častková K., Selimov D.A., Rabadanova A.A., Shuaibov A.O., Gulakhmedov R.R., Abdurakhmanov M.G., Giraev K.M. Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers. Polymers. 2023;15:3252. doi: 10.3390/polym15153252. PubMed DOI PMC
Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC
Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G.J., et al. Gaussian 09, Revision a.01. Gaussian Inc.; Wallingford, CT, USA: 2009.
Becke A.D. A New Mixing of Hartree–Fock and Local Density-functional Theories. J. Chem. Phys. 1993;98:1372–1377. doi: 10.1063/1.464304. DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988;37:785. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Andersson M.P., Uvdal P. New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p) J. Phys. Chem. A. 2005;109:2937–2941. doi: 10.1021/jp045733a. PubMed DOI
Sarkar R., Kundu T.K. Hydrogen Bond Interactions of Hydrated Aluminum Nitrate with PVDF, PVDF-TrFE, and PVDF-HFP: A Density Functional Theory-Based Illustration. Int. J. Quantum Chem. 2020;120:e26328. doi: 10.1002/qua.26278. DOI
Sarkar R., Kumari S., Kundu T.K. Density Functional Theory Based Studies on the Adsorption of Rare-Earth Ions from Hydrated Nitrate Salt Solutions on g-C3N4 Monolayer Surface. J. Mol. Graph. Model. 2020;97:107577. doi: 10.1016/j.jmgm.2020.107577. PubMed DOI
Tofel P., Částková K., Říha D., Sobola D., Papež N., Kaštyl J., Ţălu Ş., Hadaš Z. Triboelectric Response of Electrospun Stratified PVDF and PA Structures. Nanomaterials. 2022;12:349. doi: 10.3390/nano12030349. PubMed DOI PMC
Galazutdinova Y., Vega M., Grágeda M., Cabeza L.F., Ushak S. Preparation and Characterization of an Inorganic Magnesium Chloride/Nitrate/Graphite Composite for Low Temperature Energy Storage. Sol. Energy Mater. Sol. Cells. 2018;175:60–70. doi: 10.1016/j.solmat.2017.09.046. DOI
Zhong Y., Yuan J., Wang M., Li J. Phase Diagrams of Binary Systems Mg(NO3)2-KNO3, Mg(NO3)2-LiNO3 and Ternary System Mg(NO3)2-LiNO3-NaNO3. J. Chem. Eng. Data. 2020;65:3420–3427. doi: 10.1021/acs.jced.9b01091. DOI
Wang Y., Wang G., Bowron D.T., Zhu F., Hannon A.C., Zhou Y., Liu X., Shi G. Unveiling the Structure of Aqueous Magnesium Nitrate Solutions by Combining X-ray Diffraction and Theoretical Calculations. Phys. Chem. Chem. Phys. 2022;24:22939–22949. doi: 10.1039/D2CP01828D. PubMed DOI
Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Chang G., Pan X., Hao Y., Du W., Wang S., Zhou Y., Yang J., He Y. PVDF/ZnO Piezoelectric Nanofibers Designed for Monitoring of Internal Micro-Pressure. RSC Adv. 2024;14:11775–11783. doi: 10.1039/D3RA08713A. PubMed DOI PMC
Zhang J., Yang T., Tian G., Lan B., Deng W., Tang L., Ao Y., Sun Y., Zeng W., Ren X., et al. Spatially Confined MXene/PVDF Nanofiber Piezoelectric Electronics. Adv. Fiber Mater. 2024;6:133–144. doi: 10.1007/s42765-023-00337-w. DOI
Amrutha B., Anand Prabu A., Pathak M. Enhancing Piezoelectric Effect of PVDF Electrospun Fiber through NiO Nanoparticles for Wearable Applications. Heliyon. 2024;10:e29192. doi: 10.1016/j.heliyon.2024.e29192. PubMed DOI PMC
Chen Z., Zhang M., Hu Y., Wang S., Gu H., Xiong J. Ultrahigh Energy Harvesting Ability of PVDF Incorporated with 2D Halide Perovskite Nanosheets via Interface Effect. Chem. Eng. J. 2024;497:154558. doi: 10.1016/j.cej.2024.154558. DOI
Yue T., Wang M., Li X., Zheng M., Liu J., Lin J., Liu Y. Core-Sheath PVDF Hollow Porous Fibers via Coaxial Wet Spinning for Energy Harvesting. Compos. Commun. 2024;50:102019. doi: 10.1016/j.coco.2024.102019. DOI
Chen J., Fan J., Livojevic M., Gupta M., Tang T., Ayranci C. Enhancing Piezoelectric Properties of PVDF-HFP Composite Nanofibers with Cellulose Nanocrystals. Mater. Today Commun. 2024;39:108872. doi: 10.1016/j.mtcomm.2024.108872. DOI