Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides

. 2021 ; 12 () : 659275. [epub] 20210428

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33995457

Mountains of the Balkan Peninsula are significant biodiversity hotspots with great species richness and a large proportion of narrow endemics. Processes that have driven the evolution of the rich Balkan mountain flora, however, are still insufficiently explored and understood. Here we focus on a group of Cardamine (Brassicaceae) perennials growing in wet, mainly mountainous habitats. It comprises several Mediterranean endemics, including those restricted to the Balkan Peninsula. We used target enrichment with genome skimming (Hyb-Seq) to infer their phylogenetic relationships, and, along with genomic in situ hybridization (GISH), to resolve the origin of tetraploid Cardamine barbaraeoides endemic to the Southern Pindos Mts. (Greece). We also explored the challenges of phylogenomic analyses of polyploid species and developed a new approach of allele sorting into homeologs that allows identifying subgenomes inherited from different progenitors. We obtained a robust phylogenetic reconstruction for diploids based on 1,168 low-copy nuclear genes, which suggested both allopatric and ecological speciation events. In addition, cases of plastid-nuclear discordance, in agreement with divergent nuclear ribosomal DNA (nrDNA) copy variants in some species, indicated traces of interspecific gene flow. Our results also support biogeographic links between the Balkan and Anatolian-Caucasus regions and illustrate the contribution of the latter region to high Balkan biodiversity. An allopolyploid origin was inferred for C. barbaraeoides, which highlights the role of mountains in the Balkan Peninsula both as refugia and melting pots favoring species contacts and polyploid evolution in response to Pleistocene climate-induced range dynamics. Overall, our study demonstrates the importance of a thorough phylogenomic approach when studying the evolution of recently diverged species complexes affected by reticulation events at both diploid and polyploid levels. We emphasize the significance of retrieving allelic and homeologous variation from nuclear genes, as well as multiple nrDNA copy variants from genome skim data.

Zobrazit více v PubMed

Álvarez I., Wendel J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29 417–434. 10.1016/s1055-7903(03)00208-2 PubMed DOI

Ančev M., Yurukova-Grancharova P., Ignatova P., Goranova V., Stoyanov S., Yankova-Tsvetkova E., et al. (2013). Cardamine × rhodopaea (Brassicaceae), a triploid hybrid from the West Rhodope Mts: morphology, distribution, relationships and origin. Phytol. Balcan. 19 323–338.

Andermann T., Fernandes A. M., Olsson U., Töpel M., Pfeil B., Oxelman B., et al. (2019). Allele phasing greatly improves the phylogenetic utility of ultraconserved elements. Syst. Biol. 68 32–46. 10.1093/sysbio/syy039 PubMed DOI PMC

Ansell S. W., Stenøien H. K., Grundmann M., Russell S. J., Koch M. A., Schneider H., et al. (2011). The importance of Anatolian mountains as the cradle of global diversity in Arabis alpina, a key arctic–alpine species. Ann. Bot. (Oxford) 108 241–252. 10.1093/aob/mcr134 PubMed DOI PMC

Arcila D., Ortí G., Vari R., Armbruster J. W., Stiassny M. L. J., Ko K. D., et al. (2017). Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat. Ecol. Evol. 1:0020. 10.1038/s41559-016-0020 PubMed DOI

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC

Bastkowski S., Mapleson D., Spillner A., Wu T., Balvociute M., Moulton V. (2018). SPECTRE: a suite of phylogenetic tools for reticulate evolution. Bioinformatics 34 1056–1057. 10.1093/bioinformatics/btx740 PubMed DOI PMC

Bilgin R. (2011). Back to the suture: the distribution of intraspecific genetic diversity in and around Anatolia. Int. J. Molec. Sci. 12 4080–4103. 10.3390/ijms12064080 PubMed DOI PMC

Blanco-Pastor J. L., Vargas P., Pfeil B. E. (2012). Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria. PLoS One 7:e39089. 10.1371/journal.pone.0039089 PubMed DOI PMC

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Borowiec M. L. (2016). AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4:e1660. 10.7717/peerj.1660 PubMed DOI PMC

Brandrud M. K., Baar J., Lorenzo M. T., Athanasiadis A., Bateman R. M., Chase M. W., et al. (2020). Phylogenomic relationships of diploids and the origins of allotetraploids in Dactylorhiza (Orchidaceae). Syst. Biol. 69 91–109. 10.1093/sysbio/syz035 PubMed DOI PMC

Brassac J., Blattner F. R. (2015). Species-level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Syst. Biol. 64 792–808. 10.1093/sysbio/syv035 PubMed DOI PMC

Brysting A. K., Oxelman B., Huber K. T., Moulton V., Brochmann C. (2007). Untangling complex histories of genome mergings in high polyploids. Syst. Biol. 56 467–476. 10.1080/10635150701424553 PubMed DOI

Caković D., Stešević D., Schönswetter P., Frajman B. (2015). How many taxa? Spatiotemporal evolution and taxonomy of Amphoricarpos (Asteraceae, Carduoideae) on the Balkan Peninsula. Org. Divers. Evol. 15 429–445. 10.1007/s13127-015-0218-6 DOI

Cao Z., Liu X., Ogilvie H. A., Yan Z., Nakhleh L. (2019). Practical Aspects of Phylogenetic Network Analysis Using PhyloNet. bioRxiv [Preprint]. Available online at: 10.1101/746362 (Accessed January 7, 2021). DOI

Carlsen T., Bleeker W., Hurka H., Elven R., Brochmann C. (2009). Biogeography and phylogeny of Cardamine (Brassicaceae). Ann. Missouri Bot. Gard. 96 215–236. 10.2307/40389931 DOI

Carter K. A., Liston A., Bassil N. V., Alice L. A., Bushakra J. M., Sutherland B. L., et al. (2019). Target capture sequencing unravels Rubus evolution. Front. Plant Sci. 10:1615. 10.3389/fpls.2019.01615 PubMed DOI PMC

Chen H., German D. A., Al-Shehbaz I. A., Yue J., Sun H. (2020). Phylogeny of Euclidieae (Brassicaceae) based on plastome and nuclear ribosomal DNA data. Mol. Phylogenet. Evol. 153:106940. 10.1016/j.ympev.2020.106940 PubMed DOI

Chernomor O., von Haeseler A., Minh B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65 997–1008. 10.1093/sysbio/syw037 PubMed DOI PMC

Cires E., Baltisberger M., Cuesta C., Vargas P., Prieto J. A. F. (2014). Allopolyploid origin of the Balkan endemic Ranunculus wettsteinii (Ranunculaceae) inferred from nuclear and plastid DNA sequences. Org. Divers. Evol. 14 1–10. 10.1007/s13127-013-0150-6 DOI

Crowl A. A., Myers C., Cellinese N. (2017). Embracing discordance: phylogenomic analyses provide evidence for allopolyploidy leading to cryptic diversity in a Mediterranean Campanula (Campanulaceae) clade. Evolution 71 913–922. 10.1111/evo.13203 PubMed DOI PMC

Dauphin B., Grant J. R., Farrar D. R., Rothfels C. J. (2018). Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions. Mol. Phylogenet. Evol. 120 342–353. 10.1016/j.ympev.2017.11.025 PubMed DOI

Degnan J. H., Rosenberg N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24 332–340. 10.1016/j.tree.2009.01.009 PubMed DOI

del Valle J. C., Casimiro-Soriguer I., Buide M. L., Narbona E., Whittall J. B. (2019). Whole plastome sequencing within Silene section Psammophilae reveals mainland hybridization and divergence with the Balearic Island populations. Front. Plant Sci. 10:1466. 10.3389/fpls.2019.01466 PubMed DOI PMC

Doležel J., Greilhuber J., Suda J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2 2233–2244. 10.1038/nprot.2007.310 PubMed DOI

Durović S., Schönswetter P., Niketić M., Tomović G., Frajman B. (2017). Disentangling relationships among the members of the Silene saxifraga alliance (Caryophyllaceae): phylogenetic structure is geographically rather than taxonomically segregated. Taxon 66 343–364. 10.12705/662.4 DOI

Eriksson J. S., de Sousa F., Bertrand Y. J. K., Antonelli A., Oxelman B., Pfeil B. E. (2018). Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evol. Biol. 18:9. 10.1186/s12862-018-1127-z PubMed DOI PMC

Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14 2611–2620. 10.1111/j.1365-294X.2005.02553.x PubMed DOI

Fonseca L. H. M., Lohmann L. G. (2019). Exploring the potential of nuclear and mitochondrial sequencing data generated through genome-skimming for plant phylogenetics: a case study from a clade of neotropical lianas. J. Syst. Evol. 58 18–32. 10.1111/jse.12533 DOI

Freyman W. A., Johnson M. G., Rothfels C. J. (2020). Homologizer: phylogenetic phasing of gene copies into polyploid subgenomes. bioRxiv [Preprint] 10.1101/2020.10.22.351486 PubMed DOI

Georghiou K., Delipetrou P. (2010). Patterns and traits of the endemic plants of Greece. Bot. J. Linn. Soc. 162 130–422. 10.1111/j.1095-8339.2010.01025.x DOI

Gonçalves D. J. P., Simpson B. B., Ortiz E. M., Shimizu G. H., Jansen R. K. (2019). Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol. Phylogenet. Evol. 138 219–232. 10.1016/j.ympev.2019.05.022 PubMed DOI

Grover C. E., Gallagher J. P., Jareczek J. J., Page J. T., Udall J. A., Gore M. A., et al. (2015). Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol. Phylogenet. Evol. 92 45–52. 10.1016/j.ympev.2015.05.023 PubMed DOI

Grünewald S., Spillner A., Bastkowski S., Bögershausen A., Moulton V. (2013). SuperQ: computing super networks from quartets. IEEE/ACM Trans. Comput. Biol. Bioinform. 10 151–160. 10.1109/TCBB.2013.8 PubMed DOI

Harrison S., Noss R. (2017). Endemism hotspots are linked to stable climatic refugia. Ann. Bot. (Oxford) 119 207–214. 10.1093/aob/mcw248 PubMed DOI PMC

Heibl C. (2008). PHYLOCH: R Language Tree Plotting Tools and Interfaces to Diverse Phylogenetic Software Packages. Available online at: http://www.christophheibl.de/Rpackages.html (accessed November 17, 2020).

Hewitt G. M. (2011). “Mediterranean peninsulas: the evolution of hotspots,” in Biodiversity Hotspots, eds Zachos F. E., Habel J. C. (Berlin: Springer; ), 123–147. 10.1007/978-3-642-20992-5_7 DOI

Huang X. C., German D. A., Koch M. A. (2020). Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Ann. Bot. (Oxford) 125 29–47. 10.1093/aob/mcz123 PubMed DOI PMC

Jakobsson M., Rosenberg N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23 1801–1806. 10.1093/bioinformatics/btm233 PubMed DOI

Jalas J., Suominen J. (1994). Atlas Florae Europaeae 10. Helsinki: The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo.

Johnson M. G., Gardner E. M., Liu Y., Medina R., Goffinet B., Shaw A. J., et al. (2016). HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4:1600016. 10.3732/apps.1600016 PubMed DOI PMC

Jones B. M. G., Akeroyd J. R. (1993). “Cardamine,” in Flora Europaea 1, Psilotaceae to Platanaceae. 2nd Edn eds Tutin T. G., Heywood V. H., Burges N. A., Valentine D. H., Walters S. M., Webb D. A. (Cambridge: Cambridge University Press; ) 346–352.

Junier T., Zdobnov E. M. (2010). The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26 1669–1670. 10.1093/bioinformatics/btq243 PubMed DOI PMC

Kalyaanamoorthy S., Minh B. Q., Wong T. K., von Haeseler A., Jermiin L. S. (2017). Model finder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Kamneva O. K., Syring J., Liston A., Rosenberg N. A. (2017). Evaluating allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target capture sequencing. BMC Evol. Biol. 17:180. 10.1186/s12862-017-1019-7 PubMed DOI PMC

Karbstein K., Tomasello S., Hodač L., Dunkel F. G., Daubert M., Hörandl E. (2020). Phylogenomics supported by geometric morphometrics reveals delimitation of sexual species within the polyploid apomictic Ranunculus auricomus complex (Ranunculaceae). Taxon 69 1191–1220. 10.1002/tax.12365 DOI

Kates H. R., Johnson M. G., Gardner E. M., Zerega N. J. C., Wickett N. J. (2018). Allele phasing has minimal impact on phylogenetic reconstruction from targeted nuclear gene sequences in a case study of Artocarpus. Amer. J. Bot. 105 404–416. 10.1002/ajb2.1068 PubMed DOI

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Kaya S., Çiplak B. (2017). Phylogeography and taxonomy of the Psorodonotus caucasicus (Orthoptera, Tettigoniidae) group: independent double invasion of the Balkans from the Caucasus. Syst. Entomol. 42 118–133. 10.1111/syen.12197 DOI

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 1647–1649. 10.1093/bioinformatics/bDS199 PubMed DOI PMC

Koch M. A., Karl R., German D. A. (2017). Underexplored biodiversity of Eastern Mediterranean biota: systematics and evolutionary history of the genus Aubrieta (Brassicaceae). Ann. Bot. (Oxford) 119 39–57. 10.1093/aob/mcw204 PubMed DOI PMC

Konowalik K., Wagner F., Tomasello S., Vogt R., Oberprieler C. (2015). Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Mol. Phylogenet. Evol. 92 308–328. 10.1016/j.ympev.2015.06.003 PubMed DOI

Kougioumoutzis K., Kokkoris I. P., Panitsa M., Kallimanis A., Strid A., Dimopoulos P. (2021). Plant endemism centres and biodiversity hotspots in Greece. Biology 10:72. 10.3390/biology10020072 PubMed DOI PMC

Kozlov A. M., Darriba D., Flouri T., Morel B., Stamatakis A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35 4453–4455. 10.1093/bioinformatics/btz305 PubMed DOI PMC

Krak K., Caklová P., Chrtek J., Fehrer J. (2013). Reconstruction of phylogenetic relationships in a highly reticulate group with deep coalescence and recent speciation (Hieracium, Asteraceae). Heredity 110 138–151. 10.1038/hdy.2012.100 PubMed DOI PMC

Kučera J., Lihová J., Marhold K. (2006). Taxonomy and phylogeography of Cardamine impatiens and C. pectinata (Brassicaceae). Bot. J. Linn. Soc. 152 169–195. 10.1111/j.1095-8339.2006.00559.x DOI

Kučera J., Marhold K., Lihová J. (2010). Cardamine maritima group (Brassicaceae) in the amphi-Adriatic area: a hotspot of species diversity revealed by DNA sequences and morphological variation. Taxon 59 148–164. 10.2307/27757059 DOI

Kučera J., Valko I., Marhold K. (2005). On-line database of the chromosome numbers of the genus Cardamine (Brassicaceae). Biologia (Bratislava) 60 473–476.

Kyriakidou M., Tai H. H., Anglin N. L., Ellis D., Strömvik M. V. S. (2018). Current strategies of polyploid plant genome sequence assembly. Front. Plant Sci. 9:1660. 10.3389/fpls.2018.01660 PubMed DOI PMC

Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 357–359. 10.1038/nmeth.1923 PubMed DOI PMC

Larridon I., Villaverde T., Zuntini A. R., Pokorny L., Brewer G. E., Epitawalage N., et al. (2020). Tackling rapid radiations with targeted sequencing. Front. Plant Sci. 10:1655. 10.3389/fpls.2019.01655 PubMed DOI PMC

Lautenschlager U., Wagner F., Oberprieler C. (2020). AllCoPol: inferring allele co-ancestry in polyploids. BMC Bioinform. 21:441. 10.1186/s12859-020-03750-9 PubMed DOI PMC

Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC

Lihová J., Fuertes Aguilar J., Marhold K., Nieto Feliner G. (2004a). Origin of the disjunct tetraploid Cardamine amporitana (Brassicaceae) assessed with nuclear and chloroplast DNA sequence data. Amer. J. Bot. 91 1231–1242. 10.3732/ajb.91.8.1231 PubMed DOI

Lihová J., Marhold K. (2006). “Phylogenetic and diversity patterns in Cardamine (Brassicaceae) - a genus with conspicuous polyploid and reticulate evolution,” in Plant Genome: Biodiversity and Evolution, Vol. 1C: Phanerogams (Angiosperms – Dicotyledons), eds Sharma A. K., Sharma A. (Enfield: Science Publishers, Inc; ) 149–186.

Lihová J., Shimizu K. K., Marhold K. (2006). Allopolyploid origin of Cardamine asarifolia (Brassicaceae): incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Mol. Phylogenet. Evol. 39 759–786. 10.1016/j.ympev.2006.01.027 PubMed DOI

Lihová J., Tribsch A., Marhold K. (2003). The Cardamine pratensis (Brassicaceae) group in the Iberian Peninsula: taxonomy, polyploidy and distribution. Taxon 52 783–802. 10.2307/3647352 DOI

Lihová J., Tribsch A., Stuessy T. F. (2004b). Cardamine apennina: a new endemic diploid species of the C. pratensis group (Brassicaceae) from Italy. Plant Syst. Evol. 245 69–92. 10.1007/s00606-003-0119-6 DOI

López-González N., Bobo-Pinilla J., Padilla-García N., Loureiro J., Castro S., Rojas-Andrés B. M., et al. (2021). Genetic similarities versus morphological resemblance: unraveling a polyploid complex in a Mediterranean biodiversity hotspot. Mol. Phylogenet. Evol. 155:107006. 10.1016/j.ympev.2020.107006 PubMed DOI

López-Vinyallonga S., López-Pujol J., Constantinidis T., Susanna A., Garcia-Jacas N. (2015). Mountains and refuges: genetic structure and evolutionary history in closely related, endemic Centaurea in continental Greece. Mol. Phylogenet. Evol. 92 243–254. 10.1016/j.ympev.2015.06.018 PubMed DOI

Lövkvist B. (1956). The Cardamine pratensis complex. Outlines of its cytogenetics and taxonomy. Symb. Bot. Upsal. 14/2 1–131.

Maddison W. P. (1997). Gene trees in species trees. Syst. Biol. 46 523–536. 10.1093/sysbio/46.3.523 DOI

Madlung A., Wendel J. F. (2013). Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet. Genome Res. 140 270–285. 10.1159/000351430 PubMed DOI

Maguilla E., Escudero M., Hipp A. L., Luceño M. (2017). Allopatric speciation despite historical gene flow: divergence and hybridization in Carex furva and C. lucennoiberica (Cyperaceae) inferred from plastid and nuclear RAD-seq data. Mol. Ecol. 26 5646–5662. 10.1111/mec.14253 PubMed DOI

Mandáková T., Kovařík A., Zozomová-Lihová J., Shimizu-Inatsugi R., Shimizu K. K., Mummenhoff K., et al. (2013). The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell 25 3280–3295. 10.1105/tpc.113.114405 PubMed DOI PMC

Mandáková T., Lysak M. A. (2016a). Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr. Protoc. Plant Biol. 1 43–51. 10.1002/cppb.20009 PubMed DOI

Mandáková T., Lysak M. A. (2016b). Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr. Protoc. Plant Biol. 1 359–371. 10.1002/cppb.20022 PubMed DOI

Mandáková T., Marhold K., Lysak M. A. (2014). The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol. 201 982–992. 10.1111/nph.12567 PubMed DOI

Mandáková T., Zozomová-Lihová J., Kudoh H., Zhao Y., Lysak M. A., Marhold K. (2019). The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. Ann. Bot. (Oxford) 124 209–220. 10.1093/aob/mcz019 PubMed DOI PMC

Marhold K., Ančev M. E. (1999). Cardamine penzesii, a rediscovered taxon of the C. pratensis group (Cruciferae). Ann. Bot. Fenn. 36 171–180.

Marhold K., Ančev M. E., Tan K. (1996). A new subspecies of Cardamine amara (Brassicaceae) from Bulgaria and Greece. Ann. Bot. Fenn. 33 199–204.

Marhold K., Kudoh H., Pak J. H., Watanabe K., Španiel S., Lihová J. (2010). Cytotype diversity and genome size variation in eastern Asian polyploid Cardamine (Brassicaceae) species. Ann. Bot. (Oxford) 105 249–264. 10.1093/aob/mcp282 PubMed DOI PMC

Marhold K., Lihová J., Perný M., Bleeker W. (2004). Comparative ITS and AFLP analysis of diploid Cardamine (Brassicaceae) taxa from closely related polyploid complexes. Ann. Bot. (Oxford) 93 507–520. 10.1093/aob/mch073 PubMed DOI PMC

Marhold K., Lihová J., Perný M., Grupe R., Neuffer B. (2002). Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data. Bot. J. Linn. Soc. 139 275–294. 10.1046/j.1095-8339.2002.00066.x DOI

Marhold K., Šlenker M., Zozomová-Lihová J. (2018). Polyploidy and hybridization in the Mediterranean and neighbouring areas towards the north: examples from the genus Cardamine (Brassicaceae). Biol. Serb. 40 47–59. 10.5281/zenodo.1406320 DOI

Marhold K., Tan K. (2000). The distribution of Cardamine matthioli (Brassicaceae) in Greece. Thaiszia J. Bot. 9 (1999) 109–112.

Marques I., Loureiro J., Draper D.,, Castro O., Castro S. (2018). How much do we know about the frequency of hybridisation and polyploidy in the Mediterranean region? Plant Biol. 20 (Suppl. 1) 21–37. 10.1111/plb.12639 PubMed DOI

Martin M., Patterson M., Garg S., Fischer S., Pisanti N., Klau G. W., et al. (2016). WhatsHap: Fast and Accurate Read-Based Phasing. bioRxiv [Preprint]. Available online at: 10.1101/085050 (Accessed January 7, 2021). DOI

Médail F., Diadema K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36 1333–1345. 10.1111/j.1365-2699.2008.02051.x DOI

Médail F., Quézel P. (1997). Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann. Missouri. Bot. Gard. 84 112–127. 10.2307/2399957 DOI

Melichárková A., Šlenker M., Zozomová-Lihová J., Skokanová K., Šingliarová B., Kačmárová T., et al. (2020). So closely related and yet so different: Strong contrasts between the evolutionary histories of species of the Cardamine pratensis polyploid complex in Central Europe. Front. Plant Sci. 11:588856. 10.3389/fpls.2020.588856 PubMed DOI PMC

Melichárková A., Španiel S., Brišková D., Marhold K., Zozomová-Lihová J. (2017). Unravelling allopolyploid origins in the Alyssum montanum–A. repens species complex (Brassicaceae): low-copy nuclear gene data complement plastid DNA sequences and AFLPs. Bot. J. Linn. Soc. 184 485–502. 10.1093/botlinnean/box039 DOI

Melichárková A., Španiel S., Marhold K., Hurdu B. I., Drescher A., Zozomová-Lihová J. (2019). Diversification and independent polyploid origins in the disjunct species Alyssum repens from the Southeastern Alps and the Carpathians. Amer. J. Bot. 106 1499–1518. 10.1002/ajb2.1370 PubMed DOI

Morales-Briones D. F., Liston A., Tank D. C. (2018). Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytol. 218 1668–1684. 10.1111/nph.15099 PubMed DOI

Muellner-Riehl A. N., Schnitzler J., Kissling W. D., Mosbrugger V., Rijsdijk K. F., Seijmonsbergen A. C., et al. (2019). Origins of global mountain plant biodiversity: testing the ‘mountain-geobiodiversity hypothesis’. J. Biogeogr. 46 2826–2838. 10.1111/jbi.13715 DOI

Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A., Kent J. (2000). Biodiversity hotspots for conservation priorities. Nature 403 853–858. 10.1038/35002501 PubMed DOI

Naciri Y., Linder H. P. (2015). Species delimitation and relationships: The dance of the seven veils. Taxon 64 3–16. 10.12705/641.24 DOI

Nieto Feliner G. (2014). Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspect. Plant Ecol. Evol. Syst. 16 265–278. 10.1016/j.ppees.2014.07.002 DOI

Nieto Feliner G., Rosselló J. A. (2012). “Concerted evolution of multigene families and homoeologous recombination,” in Plant Genome Diversity Vol. 1 eds Wendel J., Greilhuber J., Doležel J., Leitch I. (Vienna: Springer; ) 171–193. 10.1007/978-3-7091-1130-7_12 DOI

Nikolov L. A., Shushkov P., Nevado B., Gan X., Al-Shehbaz I. A., Filatov D., et al. (2019). Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 222 1638–1651. 10.1111/nph.15732 PubMed DOI

Oberprieler C., Wagner F., Tomasello S., Konowalik K. (2017). A permutation approach for inferring species networks from gene trees in polyploid complexes by minimising deep coalescences. Methods Ecol. Evol. 8 835–849. 10.1111/2041-210X.12694 DOI

Olšavská K., Slovák M., Marhold K., Štubňová E., Kučera J. (2016). On the origins of Balkan endemics: the complex evolutionary history of the Cyanus napulifer group (Asteraceae). Ann. Bot. (Oxford) 118 1071–1088. 10.1093/aob/mcw142 PubMed DOI PMC

Oxelman B., Brysting A. K., Jones G. R., Marcussen T., Oberprieler C., Pfeil B. E. (2017). Phylogenetics of allopolyploids. Ann. Rev. Ecol. Evol. Syst. 48 543–557.

Özüdoğru B., Mummenhoff K. (2020). Phylogenetic and biogeographical history confirm the Anatolian origin of Bornmuellera (Brassicaceae) and clade divergence between Anatolia and the Balkans in the Plio-Pleistocene transition. Turkish J. Bot. 44 593–603. 10.3906/bot-2007-42 PubMed DOI

Page J. T., Gingle A. R., Udall J. A. (2013). PolyCat: a resource for genome categorization of sequencing reads from allopolyploid organisms. G3 (Bethesda) 3 517–525. 10.1534/g3.112.005298 PubMed DOI PMC

Panitsa M., Kagiampaki A., Kougioumoutzis K. (2018). “Plant diversity and biogeography of the Aegean Archipelago: a new synthesis,” in Biogeography and Biodiversity of the Aegean. In Honour of Prof. Moysis Mylonas, eds Moysis M., Pafilis P., Parmakelis A., Poulakakis N., Sfenthourakis S., Triantis K. (Nicosia: Broken Hill Publishers, Ltd.), 269–278.

Pease J. B., Brown J. W., Walker J. F., Hinchliff C. E., Smith S. A. (2018). Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. Amer. J. Bot. 105 385–403. 10.1002/ajb2.1016 PubMed DOI

Perný M., Tribsch A., Anchev M. E. (2004). Infraspecific differentiation in the Balkan diploid Cardamine acris (Brassicaceae): molecular and morphological evidence. Folia Geobot. 39 405–429. 10.1007/BF02803211 DOI

Perný M., Tribsch A., Stuessy T. F., Marhold K. (2005a). Allopolyploid origin of Cardamine silana (Brassicaceae) from Calabria (Southern Italy): karyological, morphological and molecular evidence. Bot. J. Linn. Soc. 148 101–116. 10.1111/j.1095-8339.2005.00389.x DOI

Perný M., Tribsch A., Stuessy T. F., Marhold K. (2005b). Taxonomy and cytogeography of Cardamine raphanifolia and C. gallaecica (Brassicaceae) in the Iberian Peninsula. Plant Syst. Evol. 254 69–91. 10.1007/s00606-005-0317-5 DOI

Perrigo A., Hoorn C., Antonelli A. (2020). Why mountains matter for biodiversity. J. Biogeogr. 47 315–325. 10.1111/jbi.13731 DOI

Pritchard J. K., Stephens M., Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155 945–959. PubMed PMC

R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Robinson J. T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E. S., Getz G., et al. (2011). Integrative genomics viewer. Nat. Biotechnol. 29 24–26. 10.1038/nbt.1754 PubMed DOI PMC

Roces-Díaz J. V., Jiménez-Alfaro B., Chytrý M., Díaz-Varela E. R., Álvarez-Álvarez P. (2018). Glacial refugia and mid-Holocene expansion delineate the current distribution of Castanea sativa in Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491 152–160. 10.1016/j.palaeo.2017.12.004 DOI

Rosenberg N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4 137–138. 10.1046/j.1471-8286.2003.00566.x DOI

Rothfels C. J. (2021). Polyploid phylogenetics. New Phytol. 230 66–72. 10.1111/nph.17105 PubMed DOI

Rothfels C. J., Pryer K. M., Li F. W. (2017). Next-generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing. New Phytol. 213 413–429. 10.1111/nph.14111 PubMed DOI

Rousseau-Gueutin M., Gaston A., Aïnouche A., Aïnouche M. L., Olbricht K., Staudt G., et al. (2009). Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): New insights from phylogenetic analyses of low-copy nuclear genes. Mol. Phylogenet. Evol. 51 515–530. 10.1016/j.ympev.2008.12.024 PubMed DOI

Schmickl R., Liston A., Zeisek V., Oberlander K., Weitemier K., Straub S. C. K., et al. (2016). Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae). Mol. Ecol. Resour. 16 1124–1135. 10.1111/1755-0998.12487 PubMed DOI

Schönswetter P., Suda J., Popp M., Weiss-Schneeweiss H., Brochmann C. (2007). Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molec. Phylogenet. Evol. 42 92–103. 10.1016/j.ympev.2006.06.016 PubMed DOI

Schrinner S. D., Serra Mari R., Ebler J., Rautiainen M., Seillier L., Reimer J. J., et al. (2020). Haplotype threading: accurate polyploid phasing from long reads. Genome Biol. 21:252. 10.1186/s13059-020-02158-1 PubMed DOI PMC

Shimodaira H. (2002). An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51 492–508. 10.1080/10635150290069913 PubMed DOI

Shimodaira H., Hasegawa M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17 1246–1247. 10.1093/bioinformatics/17.12.1246 PubMed DOI

Silva G. S., Souza M. M. (2013). Genomic in situ hybridization in plants. Genet. Mol. Res. 12 2953–2965. 10.4238/2013.August.12.11 PubMed DOI

Slater G. S., Birney E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6:31. 10.1186/1471-2105-6-31 PubMed DOI PMC

Small R. L., Cronn R. C., Wendel J. F. (2004). Use of nuclear genes for phylogeny reconstruction in plants. Aus. Syst. Bot. 17 145–170. 10.1071/SB03015 DOI

Soltis D. E., Visger C. J., Soltis P. S. (2014). The polyploidy revolution then…and now: Stebbins revisited. Amer. J. Bot. 101 1057–1078. 10.3732/ajb.1400178 PubMed DOI

Soltis P. S., Soltis D. E. (2009). The role of hybridization in plant speciation. Ann. Rev. Plant Biol. 60 561–588. 10.1146/annurev.arplant.043008.092039 PubMed DOI

Španiel S., Marhold K., Zozomová-Lihová J. (2017). The polyploid Alyssum montanum-A. repens complex in the Balkans: a hotspot of species and genetic diversity. Plant Syst. Evol. 303 1443–1465. 10.1007/s00606-017-1470-3 DOI

Stevanović V., Tan K., Petrova A. (2007). Mapping the endemic flora of the Balkans – a progress report. Bocconea 21 131–137.

Strid A. (1986). “Cardamine L.,” in Mountain Flora of Greece 1, ed. Strid A. (Cambridge: Cambridge University Press; ), 256–261.

Suda J., Trávníček P. (2006a). Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. Curr. Protoc. Cytometry 38 7.30.1–7.30.14. 10.1002/0471142956.cy0730s38 PubMed DOI

Suda J., Trávníček P. (2006b). Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry–new prospects for plant research. Cytometry 69A 273–280. 10.1002/cyto.a.20253 PubMed DOI

Surina B., Pfanzelt S., Einzmann H. J. R., Albach D. C. (2014). Bridging the Alps and the Middle East: evolution, phylogeny and systematics of the genus Wulfenia (Plantaginaceae). Taxon 63 843–858. 10.12705/634.18 DOI

Tan K. (2002). “Cardamine L.,” in Flora Hellenica 2, eds Strid A., Tan K. (Ruggell: A. R. G. Gantner Verlag K. G.), 178–184.

Tedder A., Helling M., Pannell J. R., Shimizu-Inatsugi R., Kawagoe T., van Campen J., et al. (2015). Female sterility associated with increased clonal propagation suggests a unique combination of androdioecy and asexual reproduction in populations of Cardamine amara (Brassicaceae). Ann. Bot. (Oxford) 115 763–776. 10.1093/aob/mcv006 PubMed DOI PMC

Temsch E. M., Greilhuber J., Krisai R. (2010). Genome size in liverworts. Preslia 82 63–80.

Thompson J. D. (2020). Plant Evolution in the Mediterranean: Insights for conservation. 2nd Edn. New York: Oxford University Press. 10.1093/oso/9780198835141.001.0001 DOI

Tillich M., Lehwark P., Pellizzer T., Ulbricht-Jones E. S., Fischer A., Bock R., et al. (2017). GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45 W6–W11. 10.1093/nar/gkx391 PubMed DOI PMC

Tkach N., Röser M., Suchan T., Cieślak E., Schönswetter P., Ronikier M. (2019). Contrasting evolutionary origins of two mountain endemics: Saxifraga wahlenbergii (Western Carpathians) and S. styriaca (Eastern Alps). BMC Evol. Biol. 19:18. 10.1186/s12862-019-1355-x PubMed DOI PMC

Tomasello S., Karbstein K., Hodač L., Paetzold C., Hörandl E. (2020). Phylogenomics unravels Quaternary vicariance and allopatric speciation patterns in temperate-montane plant species: a case study on the Ranunculus auricomus species complex. Molec. Ecol. 29 2031–2049. 10.1111/mec.15458 PubMed DOI

Tomović G., Lakušić D., Ranğelović V., Marhold K. (2009). Cardamine amara (Brassicaceae) in Serbia and Republic of Macedonia. Biologia (Bratislava) 64 1095–1099. 10.2478/s11756-009-0182-8 DOI

Tomović G., Niketić M., Lakušić D., Ranğelović V., Stevanović V. (2014). Balkan endemic plants in Central Serbia and Kosovo regions: distribution patterns, ecological characteristics, and centres of diversity. Bot. J. Linn. Soc. 176 173–202. 10.1111/boj.12197 DOI

Vargas O. M., Ortiz E. M., Simpson B. B. (2017). Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-andean diversification (Asteraceae: Astereae: Diplostephium). New Phytol. 214 1736–1750. 10.1111/nph.14530 PubMed DOI

Vatanparast M., Powell A., Doyle J. J., Egan A. N. (2018). Targeting legume loci: a comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Appl. Plant Sci. 6:e1036. 10.1002/aps3.1036 PubMed DOI PMC

Villaverde T., Pokorny L., Olsson S., Rincón-Barrado M., Johnson M. G., Gardner E. M., et al. (2018). Bridging the micro-and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytol. 220 636–650. 10.1111/nph.15312 PubMed DOI

Walker J. F., Walker-Hale N., Vargas O. M., Larson D. A., Stull G. W. (2019). Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 7:e7747. 10.7717/peerj.7747 PubMed DOI PMC

Weitemier K., Straub S. C., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., et al. (2014). Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2:1400042. 10.3732/apps.1400042 PubMed DOI PMC

Weitemier K., Straub S. C. K., Fishbein M., Liston A. (2015). Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae). PeerJ 3:e718. 10.7717/peerj.718 PubMed DOI PMC

Wen D., Yu Y., Zhu J., Nakhleh L. (2018). Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67 735–740. 10.1093/sysbio/syy015 PubMed DOI PMC

Zhang C., Rabiee M., Sayyari E., Mirarab S. (2018). ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19:153. 10.1186/s12859-018-2129-y PubMed DOI PMC

Zozomová-Lihová J., Malánová-Krásná I., Vít P., Urfus T., Senko D., Svitok M., et al. (2015). Cytotype distribution patterns, ecological differentiation, and genetic structure in a diploid-tetraploid contact zone of Cardamine amara. Amer. J. Bot. 102 1380–1395. 10.3732/ajb.1500052 PubMed DOI

Zozomová-Lihová J., Melichárková A., Svitok M., Španiel S. (2020). Pleistocene range disruption and postglacial expansion with secondary contacts explain the genetic and cytotype structure in the western Balkan endemic Alyssum austrodalmaticum (Brassicaceae). Plant Syst. Evol. 306:47. 10.1007/s00606-020-01677-5 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...