A chromosome-level genome assembly for the amphibious plant Rorippa aquatica reveals its allotetraploid origin and mechanisms of heterophylly upon submergence
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38637665
PubMed Central
PMC11026429
DOI
10.1038/s42003-024-06088-7
PII: 10.1038/s42003-024-06088-7
Knihovny.cz E-zdroje
- MeSH
- chromozomy MeSH
- ethyleny MeSH
- fyziologická adaptace MeSH
- listy rostlin genetika MeSH
- Rorippa * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ethyleny MeSH
The ability to respond to varying environments is crucial for sessile organisms such as plants. The amphibious plant Rorippa aquatica exhibits a striking type of phenotypic plasticity known as heterophylly, a phenomenon in which leaf form is altered in response to environmental factors. However, the underlying molecular mechanisms of heterophylly are yet to be fully understood. To uncover the genetic basis and analyze the evolutionary processes driving heterophylly in R. aquatica, we assembled the chromosome-level genome of the species. Comparative chromosome painting and chromosomal genomics revealed that allopolyploidization and subsequent post-polyploid descending dysploidy occurred during the speciation of R. aquatica. Based on the obtained genomic data, the transcriptome analyses revealed that ethylene signaling plays a central role in regulating heterophylly under submerged conditions, with blue light signaling acting as an attenuator of ethylene signal. The assembled R. aquatica reference genome provides insights into the molecular mechanisms and evolution of heterophylly.
CEITEC Central European Institute of Technology Masaryk University CZ 625 00 Brno Czech Republic
Center for Plant Sciences Kyoto Sangyo University Kamigamo Motoyama Kita ku Kyoto Japan
Department of Horticulture Faculty of Agriculture University of Maragheh Maragheh Iran
Department of Plant Biology University of California Davis One Shields Avenue Davis CA USA
Faculty of Life Sciences Kyoto Sangyo University Kamigamo Motoyama Kita ku Kyoto Japan
Faculty of Science Kanagawa University 3 27 1 Rokkakubashi Kanagawa ku Yokohama Kanagawa Japan
Zobrazit více v PubMed
Li G, Hu S, Hou H, Kimura S. Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants. Plants Basel Switz. 2019;8:E420. PubMed PMC
Wells CL, Pigliucci M. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspect. Plant Ecol. Evol. Syst. 2000;3:1–18. doi: 10.1078/1433-8319-00001. DOI
Nakayama H, et al. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. Plant Cell. 2014;26:4733–4748. doi: 10.1105/tpc.114.130229. PubMed DOI PMC
Li G, et al. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants. Plant Cell Rep. 2017;36:1225–1236. doi: 10.1007/s00299-017-2148-6. PubMed DOI
Kuwabara A, Ikegami K, Koshiba T, Nagata T. Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae) Planta. 2003;217:880–887. doi: 10.1007/s00425-003-1062-z. PubMed DOI
Kim J, et al. A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus. PLoS Genet. 2018;14:e1007208. doi: 10.1371/journal.pgen.1007208. PubMed DOI PMC
Doll Y, Koga H, Tsukaya H. The diversity of stomatal development regulation in Callitriche is related to the intrageneric diversity in lifestyles. Proc. Natl Acad. Sci. USA. 2021;118:e2026351118. doi: 10.1073/pnas.2026351118. PubMed DOI PMC
van Veen H, Sasidharan R. Shape shifting by amphibious plants in dynamic hydrological niches. N. Phytol. 2021;229:79–84. doi: 10.1111/nph.16347. PubMed DOI PMC
Nakayama H, Nakayama N, Nakamasu A, Sinha N, Kimura S. Toward elucidating the mechanisms that regulate heterophylly. Plant Morphol. 2012;24:57–63. doi: 10.5685/plmorphol.24.57. DOI
Nakayama H, Sinha NR, Kimura S. How do plants and phytohormones accomplish heterophylly, leaf phenotypic plasticity, in response to environmental cues. Front. Plant Sci. 2017;8:1717. doi: 10.3389/fpls.2017.01717. PubMed DOI PMC
Li G, et al. Mechanisms of the morphological plasticity induced by phytohormones and the environment in plants. Int. J. Mol. Sci. 2021;22:E765. doi: 10.3390/ijms22020765. PubMed DOI PMC
Li G, et al. Establishment of an Agrobacterium mediated transformation protocol for the detection of cytokinin in the heterophyllous plant Hygrophila difformis (Acanthaceae) Plant Cell Rep. 2020;39:737–750. doi: 10.1007/s00299-020-02527-x. PubMed DOI
Koga H, Kojima M, Takebayashi Y, Sakakibara H, Tsukaya H. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L. Plant Cell. 2021;33:3272–3292. doi: 10.1093/plcell/koab192. PubMed DOI PMC
La Rue C. Regeneration in Radicula aquatica. Pap. Mich. Acad. Sci. Arts Lett. 1943;28:51–61.
Nakayama H, Fukushima K, Fukuda T, Yokoyama J, Kimura S. Molecular phylogeny determined using chloroplast DNA inferred a new phylogenetic relationship of Rorippa aquatica (Eaton) EJ Palmer & Steyermark (Brassicaceae)—Lake Cress. Am. J. Plant Sci. 2014;05:48–54. doi: 10.4236/ajps.2014.51008. DOI
Warwick SI, Francis A, Al-Shehbaz IA. Brassicaceae: species checklist and database on CD-Rom. Plant Syst. Evol. 2006;259:249–258. doi: 10.1007/s00606-006-0422-0. DOI
Flora of North America Editorial Committee. Flora of North America: Volume 7: Magnoliophyta: Dilleniidae, Part 2 (ed. Flora of North America Editorial Committee) 493–506 (Oxford University Press Inc, 2010).
Nakayama H, et al. Comparative transcriptomics with self-organizing map reveals cryptic photosynthetic differences between two accessions of North American Lake cress. Sci. Rep. 2018;8:3302. doi: 10.1038/s41598-018-21646-w. PubMed DOI PMC
Amano R, et al. Molecular basis for natural vegetative propagation via regeneration in North American Lake Cress, Rorippa aquatica (Brassicaceae) Plant Cell Physiol. 2020;61:353–369. doi: 10.1093/pcp/pcz202. PubMed DOI
Les DH. Molecular systematics and taxonomy of lake cress (Neobeckia aquatica; Brassicaceae), an imperiled aquatic mustard. Aquat. Bot. 1994;49:149–165. doi: 10.1016/0304-3770(94)90035-3. DOI
Hay AS, et al. Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J. Cell Mol. Biol. 2014;78:1–15. doi: 10.1111/tpj.12447. PubMed DOI
Bar M, Ori N. Compound leaf development in model plant species. Curr. Opin. Plant Biol. 2015;23:61–69. doi: 10.1016/j.pbi.2014.10.007. PubMed DOI
Schranz ME, Lysak MA, Mitchell-Olds T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 2006;11:535–542. doi: 10.1016/j.tplants.2006.09.002. PubMed DOI
Lysak MA, Mandáková T, Schranz ME. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 2016;30:108–115. doi: 10.1016/j.pbi.2016.02.001. PubMed DOI
Mandáková T, et al. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. Ann. Bot. 2019;124:209–220. doi: 10.1093/aob/mcz019. PubMed DOI PMC
Zimin AV, et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27:787–792. doi: 10.1101/gr.213405.116. PubMed DOI PMC
Haas BJ, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–5666. doi: 10.1093/nar/gkg770. PubMed DOI PMC
Haas BJ, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9:R7. doi: 10.1186/gb-2008-9-1-r7. PubMed DOI PMC
Jeelani SM, Rani S, Kumar S, Kumari S, Gupta RC. Cytological studies of Brassicaceae burn. (Cruciferae juss.) from Western Himalayas. Tsitol. Genet. 2013;47:26–36. PubMed
Huang C-H, et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 2016;33:394–412. doi: 10.1093/molbev/msv226. PubMed DOI PMC
Cai L, Ma H. Using nuclear genes to reconstruct angiosperm phylogeny at the species level: a case study with Brassicaceae species. J. Syst. Evol. 2016;54:438–452. doi: 10.1111/jse.12204. DOI
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol. 2017;34:1363–1377. doi: 10.1093/molbev/msx069. PubMed DOI PMC
Ikematsu S, et al. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater. Curr. Biol. 2023;33:543–556.e4. doi: 10.1016/j.cub.2022.12.064. PubMed DOI
Kuromori T, Fujita M, Takahashi F, Yamaguchi-Shinozaki K, Shinozaki K. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. Plant J. Cell Mol. Biol. 2022;109:342–358. doi: 10.1111/tpj.15619. PubMed DOI PMC
Lee YK, et al. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development. 2006;133:4305–4314. doi: 10.1242/dev.02604. PubMed DOI
Vlad D, et al. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science. 2014;343:780–783. doi: 10.1126/science.1248384. PubMed DOI
Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development. 2004;131:2997–3006. doi: 10.1242/dev.01186. PubMed DOI
Emery JF, et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 2003;13:1768–1774. doi: 10.1016/j.cub.2003.09.035. PubMed DOI
Mandáková T, et al. The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell. 2013;25:3280–3295. doi: 10.1105/tpc.113.114405. PubMed DOI PMC
Mandáková T, Gloss AD, Whiteman NK, Lysak MA. How diploidization turned a tetraploid into a pseudotriploid. Am. J. Bot. 2016;103:1187–1196. doi: 10.3732/ajb.1500452. PubMed DOI
Mandáková T, Lysak MA. Healthy roots and leaves: comparative genome structure of horseradish and watercress. Plant Physiol. 2019;179:66–73. doi: 10.1104/pp.18.01165. PubMed DOI PMC
Nagaharu U, Nagaharu N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J. Bot. 1935;7:389–452.
Chalhoub B, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345:950–953. doi: 10.1126/science.1253435. PubMed DOI
Yang J, et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 2016;48:1225–1232. doi: 10.1038/ng.3657. PubMed DOI
Šlenker M, et al. Allele sorting as a novel approach to resolving the origin of allotetraploids using Hyb-Seq data: a case study of the Balkan mountain endemic Cardamine barbaraeoides. Front. Plant Sci. 2021;12:659275. doi: 10.3389/fpls.2021.659275. PubMed DOI PMC
Javůrková-Kratochvílo, T. P. Chromosome study of the genus Rorippa Scop. em. Reichenb. in Czechoslovakia. Preslia44, 140–156 (1972).
Howard HW. Chromosome numbers of British species of the genus Rorippa Scop (part of the Genus Nasturtium R.Br.) Nature. 1947;159:66–66. doi: 10.1038/159066a0. PubMed DOI
Binder BM. Ethylene signaling in plants. J. Biol. Chem. 2020;295:7710–7725. doi: 10.1074/jbc.REV120.010854. PubMed DOI PMC
Cheng W-H, Chiang M-H, Hwang S-G, Lin P-C. Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol. Biol. 2009;71:61–80. doi: 10.1007/s11103-009-9509-7. PubMed DOI PMC
Nakata M, et al. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell. 2012;24:519–535. doi: 10.1105/tpc.111.092858. PubMed DOI PMC
Pierik R, Whitelam GC, Voesenek LACJ, de Kroon H, Visser EJW. Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling. Plant J. Cell Mol. Biol. 2004;38:310–319. doi: 10.1111/j.1365-313X.2004.02044.x. PubMed DOI
Lin C. Plant blue-light receptors. Trends Plant Sci. 2000;5:337–342. doi: 10.1016/S1360-1385(00)01687-3. PubMed DOI
Sharma P, Chatterjee M, Burman N, Khurana JP. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling. Plant Cell Environ. 2014;37:961–977. doi: 10.1111/pce.12212. PubMed DOI
Lin BL, Yang WJ. Blue light and abscisic acid independently induce heterophyllous switch in Marsilea quadrifolia. Plant Physiol. 1999;119:429–434. doi: 10.1104/pp.119.2.429. PubMed DOI PMC
Lysak MA, Mandáková T. Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol. Biol. Clifton NJ. 2013;990:13–24. doi: 10.1007/978-1-62703-333-6_2. PubMed DOI
Mandáková T, Lysak MA. Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr. Protoc. Plant Biol. 2016;1:43–51. doi: 10.1002/cppb.20009. PubMed DOI
Mandáková T, Lysak MA. Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr. Protoc. Plant Biol. 2016;1:359–371. doi: 10.1002/cppb.20022. PubMed DOI
Grob S, Grossniklaus U. Chromatin conformation capture-based analysis of nuclear architecture. Methods Mol. Biol. Clifton NJ. 2017;1456:15–32. doi: 10.1007/978-1-4899-7708-3_2. PubMed DOI
Walker BJ, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Dudchenko O, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–95. doi: 10.1126/science.aal3327. PubMed DOI PMC
Xu G-C, et al. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly. GigaScience. 2019;8:giy157. doi: 10.1093/gigascience/giy157. PubMed DOI PMC
Haghshenas E, Hach F, Sahinalp SC, Chauve C. CoLoRMap: correcting long reads by mapping short reads. Bioinformatics. 2016;32:i545–i551. doi: 10.1093/bioinformatics/btw463. PubMed DOI
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19:ii215–225. doi: 10.1093/bioinformatics/btg1080. PubMed DOI
Salzberg SL, Pertea M, Delcher AL, Gardner MJ, Tettelin H. Interpolated Markov models for eukaryotic gene finding. Genomics. 1999;59:24–31. doi: 10.1006/geno.1999.5854. PubMed DOI
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Allen JE, Pertea M, Salzberg SL. Computational gene prediction using multiple sources of evidence. Genome Res. 2004;14:142–148. doi: 10.1101/gr.1562804. PubMed DOI PMC
Conesa A, Götz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics. 2008;2008:619832. doi: 10.1155/2008/619832. PubMed DOI PMC
Kurtz S, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. doi: 10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Krzywinski, M. I. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 10.1101/gr.092759.109 (2009). PubMed PMC
Gan X, et al. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nat. Plants. 2016;2:16167. doi: 10.1038/nplants.2016.167. PubMed DOI PMC
Byrne SL, et al. The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Sci. Rep. 2017;7:40728. doi: 10.1038/srep40728. PubMed DOI PMC
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC
Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinforma. 2006;7:62. doi: 10.1186/1471-2105-7-62. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. doi: 10.1186/s13059-015-0721-2. PubMed DOI PMC
Ranwez V, Harispe S, Delsuc F, Douzery EJP. MACSE: multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PLoS ONE. 2011;6:e22594. doi: 10.1371/journal.pone.0022594. PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC