Healthy Roots and Leaves: Comparative Genome Structure of Horseradish and Watercress

. 2019 Jan ; 179 (1) : 66-73. [epub] 20181105

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30397022

Horseradish (Armoracia rusticana) and watercress (Nasturtium officinale) are economically important cruciferous vegetable species with limited genomic resources. We used comparative chromosome painting to identify the extent of chromosomal collinearity between horseradish and watercress, and to reconstruct the origin and evolution of the two tetraploid genomes (2n = 4x = 32). Our results show that horseradish and watercress genomes originated from a common ancestral (n = 8) genome, structurally resembling the Ancestral Crucifer Karyotype (n = 8), which, however, contained two unique translocation chromosomes (AK6/8 and AK8/6). Except for a 2.4-Mb unequal chromosome translocation in watercress, both genomes are structurally identical. The structural similarity of the two parental subgenomes might suggest an autotetraploid origin of horseradish and watercress genomes. The subgenome stasis, apart from the single-chromosome translocation, indicates that homeologous recombination played a limited role in postpolyploid evolution in both tetraploid genomes. The octoploid genome of one-rowed watercress (N. microphyllum, 2n = 8x = 64), structurally mirroring the tetraploid horseradish and watercress genomes, originated via autopolyploidization from the immediate tetraploid predecessor of watercress or hybridization between this and another now-extinct tetraploid Nasturtium species. These comparative cytogenomic maps in horseradish and watercress represent a first stepping stone for future whole-genome sequencing efforts and genetic improvement of both crop species.

Zobrazit více v PubMed

Agneta R, Möllers C, Rivelli AR (2013) Horseradish (Armoracia rusticana), a neglected medical and condiment species with a relevant glucosinolate profile: A review. Genet Resour Crop Evol 60: 1923–1943

Al-Shehbaz IA. (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61: 931–954

Al-Shehbaz IA, Price RA (1998) Delimitation of the genus Nasturtium (Brassicaceae). Novon 8: 124–126

Al-Shehbaz IA, Rollins RC (1988) A reconsideration of Cardamine curvisiliqua and C. gambellii as species of Rorippa (Cruciferae). J Arnold Arbor 69: 65–71

Bleeker W, Huthmann M, Hurka H (1999) Evolution of the hybrid taxa in Nasturtium R.Br. (Brassicaceae). Folia Geobot 34: 421–433

Comai L, Tyagi AP, Lysak MA (2003) FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res 11: 217–226 PubMed

Douglas GM, Gos G, Steige KA, Salcedo A, Holm K, Josephs EB, Arunkumar R, Ågren JA, Hazzouri KM, Wang W, et al. (2015) Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc Natl Acad Sci USA 112: 2806–2811 PubMed PMC

Gan X, Hay A, Kwantes M, Haberer G, Hallab A, Ioio RD, Hofhuis H, Pieper B, Cartolano M, Neumann U, et al. (2016) The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nat Plants 2: 16167. PubMed PMC

Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly-Lopez Z, Steffen JG, Hazzouri KM, et al. (2013) An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet 45: 891–898 PubMed

Hay AS, Pieper B, Cooke E, Mandáková T, Cartolano M, Tattersall AD, Ioio RD, McGowan SJ, Barkoulas M, Galinha C, et al. (2014) Cardamine hirsuta: A versatile genetic system for comparative studies. Plant J 78: 1–15 PubMed

Heenan PB. (2017) A taxonomic revision of Cardamine L. (Brassicaceae) in New Zealand. Phytotaxa 330: 1–154

Howard HW, Manton I (1946) Autopolyploid and allopolyploid watercress with the description of a new species. Ann Bot 10: 1–13

Huska D, Leitch IJ, De Carvalho JF, Leitch AR, Salmon A, Ainouche M, Kovarik A (2016) Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biol Invasions 18: 2137–2151

Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19: 4780. PubMed PMC

Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, et al. (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5: 3706. PubMed PMC

Klimek-Szczykutowicz M, Szopa A, Ekiert H (2018) Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress)—a review. Fitoterapia 129: 283–292 PubMed

Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, Rutten T, Fuchs J, Endo T, Nasuda S, Ghukasyan A, et al. (2010) The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 56: 146–155 PubMed

Krainer FW, Glieder A (2015) An updated view on horseradish peroxidases: Recombinant production and biotechnological applications. Appl Microbiol Biotechnol 99: 1611–1625 PubMed PMC

Kroener EM, Buettner A (2018) Sensory-analytical comparison of the aroma of different horseradish varieties (Armoracia rusticana). Front Chem 6: 149. PubMed PMC

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: An information aesthetic for comparative genomics. Genome Res 19: 1639–1645 PubMed PMC

Liu B, Davis TM (2011) Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae). BMC Plant Biol 11: 157. PubMed PMC

Lysak MA, Mandáková T, Schranz ME (2016) Comparative paleogenomics of crucifers: Ancestral genomic blocks revisited. Curr Opin Plant Biol 30: 108–115 PubMed

Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20: 2559–2570 PubMed PMC

Mandáková T, Lysak MA (2016a) Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr Protoc Plant Biol 1: 43–51 PubMed

Mandáková T, Lysak MA (2016b) Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr Protoc Plant Biol 1: 359–371 PubMed

Mandáková T, Kovarík A, Zozomová-Lihová J, Shimizu-Inatsugi R, Shimizu KK, Mummenhoff K, Marhold K, Lysak MA (2013) The more the merrier: Recent hybridization and polyploidy in Cardamine. Plant Cell 25: 3280–3295 PubMed PMC

Mandáková T, Marhold K, Lysak MA (2014) The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol 201: 982–992 PubMed

Mandáková T, Gloss AD, Whiteman NK, Lysak MA (2016) How diploidization turned a tetraploid into a pseudotriploid. Am J Bot 103: 1187–1196 PubMed

Manton I. (1935) The cytological history of watercress (Nasturtium officinale R.Br.).Z. indukt. Abstammungs-Vererbungsl 69: 132–157

Novikova PY, Tsuchimatsu T, Simon S, Nizhynska V, Voronin V, Burns R, Fedorenko OM, Holm S, Säll T, Prat E, et al. (2017) Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica. Mol Biol Evol 34: 957–968 PubMed PMC

Olsen CE, Huang XC, Hansen CIC, Cipollini D, Ørgaard M, Matthes A, Geu-Flores F, Koch MA, Agerbirk N (2016) Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates. Phytochemistry 132: 33–56 PubMed

Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101: 18240–18245 PubMed PMC

Rasheed S, Khuroo AA, Ganie AH, Mehraj G, Dar T, Dar GH (2018) Correct taxonomic delimitation of Nasturtium microphyllum Rchb. from Nasturtium officinale R. Br. (Brassicaceae) in Kashmir Himalaya, India. J Asia-Pac Biodivers 11: 154–157

Rosato M, Álvarez I, Nieto Feliner G, Rosselló JA (2017) High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae). PLoS One 12: e0187131. PubMed PMC

Sampliner D, Miller A (2009) Ethnobotany of horseradish (Armoracia rusticana, Brassicaceae) and its wild relatives (Armoracia spp.): Reproductive biology and local uses in their native ranges. Econ Bot 63: 303–313

Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: Building blocks of crucifer genomes. Trends Plant Sci 11: 535–542 PubMed

Veitch NC. (2004) Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 65: 249–259 PubMed

Voutsina N, Payne AC, Hancock RD, Clarkson GJ, Rothwell SD, Chapman MA, Taylor G (2016) Characterization of the watercress (Nasturtium officinale R. Br.; Brassicaceae) transcriptome using RNASeq and identification of candidate genes for important phytonutrient traits linked to human health. BMC Genomics 17: 378. PubMed PMC

Warwick SI, Francis A, Shehbaz IA (2006) Brassicaceae: Species checklist and database on CD-ROM. Plant Syst Evol 259: 249–258

Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133: 255–261 PubMed

Zozomová-Lihová J, Mandáková T, Kovaříková A, Mühlhausen A, Mummenhoff K, Lysak MA, Kovařík A (2014) When fathers are instant losers: Homogenization of rDNA loci in recently formed Cardamine × schulzii trigenomic allopolyploid. New Phytol 203: 1096–1108 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...