An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-19104S
Grantová Agentura České Republiky
VA390012
University of Pardubice/Faculty of Chemical Technology
PubMed
33494275
PubMed Central
PMC7864481
DOI
10.3390/s21030711
PII: s21030711
Knihovny.cz E-zdroje
- Klíčová slova
- ethylene, ionic liquid, printed electrochemical sensor, solid polymer electrolyte,
- Publikační typ
- časopisecké články MeSH
An electrochemical amperometric ethylene sensor with solid polymer electrolyte (SPE) and semi-planar three electrode topology involving a working, pseudoreference, and counter electrode is presented. The polymer electrolyte is based on the ionic liquid 1-butyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][NTf2] immobilized in a poly(vinylidene fluoride) matrix. An innovative aerosol-jet printing technique was used to deposit the gold working electrode (WE) on the solid polymer electrolyte layer to make a unique electrochemical active SPE/WE interface. The analyte, gaseous ethylene, was detected by oxidation at 800 mV vs. the platinum pseudoreference electrode. The sensor parameters such as sensitivity, response/recovery time, repeatability, hysteresis, and limits of detection and quantification were determined and their relation to the morphology and microstructure of the SPE/WE interface examined. The use of additive printing techniques for sensor preparation demonstrates the potential of polymer electrolytes with respect to the mass production of printed electrochemical gas sensors.
Zobrazit více v PubMed
Saltveit M.E. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol. Technol. 1999;15:279–292. doi: 10.1016/S0925-5214(98)00091-X. DOI
FAO . Global Food Losses and Food Waste—Extent, Causes and Prevention. FAO; Rome, Italy: 2011.
FAO . The State of Food and Agriculture 2019-Moving Forward on Food Loss and Waste Reduce. FAO; Rome, Italy: 2019.
Chauhan R., Moreno M., Banda D.M., Zamborini F.P., Grapperhaus C.A. Chemiresistive metal-stabilized thiyl radical films as highly selective ethylene sensors. RSC Adv. 2014;4:46787–46790. doi: 10.1039/C4RA07560A. DOI
Li B., Li M., Meng F., Liu J. Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous Α-Fe2O3. Sens. Actuators B Chem. 2019;290:396–405. doi: 10.1016/j.snb.2019.04.002. DOI
Beniwal A. Sunny Apple fruit quality monitoring at room temperature using sol–gel spin coated Ni–SnO2 thin film sensor. J. Food Meas. Charact. 2019;13:857–863. doi: 10.1007/s11694-018-9998-7. DOI
Ishihara S., Bahuguna A., Kumar S., Krishnan V., Labuta J., Nakanishi T., Tanaka T., Kataura H., Kon Y., Hong D. Cascade Reaction-Based Chemiresistive Array for Ethylene Sensing. ACS Sens. 2020;5:1405–1410. doi: 10.1021/acssensors.0c00194. PubMed DOI
Pimtong-Ngam Y., Jiemsirilers S., Supothina S. Preparation of tungsten oxide-tin oxide nanocomposites and their ethylene sensing characteristics. Sens. Actuators A Phys. 2007;139:7–11. doi: 10.1016/j.sna.2006.10.032. DOI
Ahn H., Noh J.H., Kim S.B., Overfelt R.A., Yoon Y.S., Kim D.J. Effect of annealing and argon-to-oxygen ratio on sputtered SnO2 thin film sensor for ethylene gas detection. Mater. Chem. Phys. 2010;124:563–568. doi: 10.1016/j.matchemphys.2010.07.012. DOI
Wang L.P., Jin Z., Luo T., Ding Y., Liu J.H., Wang X.F., Li M.Q. The detection of ethylene using porous ZnO nanosheets: Utility in the determination of fruit ripeness. New J. Chem. 2019;43:3619–3624. doi: 10.1039/C9NJ00031C. DOI
Nimittrakoolchai O.U., Supothina S. High-yield precipitation synthesis of tungsten oxide platelet particle and its ethylene gas-sensing characteristic. Mater. Chem. Phys. 2008;112:270–274. doi: 10.1016/j.matchemphys.2008.05.049. DOI
Kathirvelan J., Vijayaraghavan R., Thomas A. Ethylene detection using TiO2-WO3 composite sensor for fruit ripening applications. Sens. Rev. 2017;37:147–154. doi: 10.1108/SR-12-2016-0262. DOI
Leangtanom P., Wisitsoraat A., Jaruwongrungsee K., Chanlek N., Phanichphant S., Kruefu V. Highly sensitive and selective ethylene gas sensors based on CeOx-SnO2 nanocomposites prepared by a Co-precipitation method. Mater. Chem. Phys. 2020;254:123540. doi: 10.1016/j.matchemphys.2020.123540. DOI
Zhao Q., Duan Z., Yuan Z., Li X., Si W., Liu B., Zhang Y., Jiang Y., Tai H. High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection. Chin. Chem. Lett. 2020;31:2045–2049. doi: 10.1016/j.cclet.2020.04.032. DOI
Sholehah A., Faroz D.F., Huda N., Utari L., Septiani N.L.W., Yuliarto B. Synthesis of ZnO flakes on flexible substrate and its application on ethylene sensing at room temperature. Chemosensors. 2020;8:2. doi: 10.3390/chemosensors8010002. DOI
Chen W.Y., Yermembetova A., Washer B.M., Jiang X., Shuvo S.N., Peroulis D., Wei A., Stanciu L.A. Selective Detection of Ethylene by MoS2-Carbon Nanotube Networks Coated with Cu(I)-Pincer Complexes. ACS Sens. 2020;5:1699–1706. doi: 10.1021/acssensors.0c00344. PubMed DOI
Alharbi A.A., Sackmann A., Weimar U., Bârsan N. Acetylene- and Ethylene-Sensing Mechanism for LaFeO3-Based Gas Sensors: Operando Insights. J. Phys. Chem. C. 2020;124:7317–7326. doi: 10.1021/acs.jpcc.0c01052. DOI
Alharbi A.A., Sackmann A., Weimar U., Bârsan N. A highly selective sensor to acetylene and ethylene based on LaFeO3. Sens. Actuators B Chem. 2020;303:127204. doi: 10.1016/j.snb.2019.127204. DOI
Sklorz A., Janßen S., Lang W. Detection limit improvement for NDIR ethylene gas detectors using passive approaches. Sens. Actuators B Chem. 2012;175:246–254. doi: 10.1016/j.snb.2012.09.085. DOI
Eslami Jahromi K., Pan Q., Khodabakhsh A., Sikkens C., Assman P., Cristescu S.M., Moselund P.M., Janssens M., Verlinden B.E., Harren F.J.M., et al. A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage. Sensors. 2019;19:2334. doi: 10.3390/s19102334. PubMed DOI PMC
Pirsa S., Chavoshizadeh S. Design of an optical sensor for ethylene based on nanofiber bacterial cellulose film and its application for determination of banana storage time. Polym. Adv. Technol. 2018;29:1385–1393. doi: 10.1002/pat.4250. DOI
Zhang Y., Jiang P., Cao W., Li X., Lai J. High-sensitivity ethylene gas sensor based on NDIR and dual-channel lock-in amplifier. Optik. 2020;223:165630. doi: 10.1016/j.ijleo.2020.165630. DOI
Kim J.-H., Shiratori S. Fabrication of Color Changeable Film to Detect Ethylene Gas. Jpn. J. Appl. Phys. 2006;45:4274–4278. doi: 10.1143/JJAP.45.4274. DOI
Li Z., Suslick K.S. Colorimetric Sensor Array for Monitoring CO and Ethylene. Anal. Chem. 2019;91:797–802. doi: 10.1021/acs.analchem.8b04321. PubMed DOI
Nguyen L.H., Oveissi F., Chandrawati R., Dehghani F., Naficy S. Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors. ACS Sens. 2020;5:1921–1928. doi: 10.1021/acssensors.0c00117. PubMed DOI
Santiago Cintrón M., Green O., Burstyn J.N. Ethylene sensing by silver(I) salt-impregnated luminescent films. Inorg. Chem. 2012;51:2737–2746. doi: 10.1021/ic102590f. PubMed DOI PMC
Sun M., Yang X., Zhang Y., Wang S., Wong M.W., Ni R., Huang D. Rapid and Visual Detection and Quantitation of Ethylene Released from Ripening Fruits: The New Use of Grubbs Catalyst. J. Agric. Food Chem. 2019;67:507–513. doi: 10.1021/acs.jafc.8b05874. PubMed DOI
Tolentino M.A.K.P., Albano D.R.B., Sevilla F.B. Piezoelectric sensor for ethylene based on silver(I)/polymer composite. Sens. Actuators B Chem. 2018;254:299–306. doi: 10.1016/j.snb.2017.07.015. DOI
Graewe B., Rang A., Schalley C.A., Haubrich J., Bargon J. First gravimetric detection of ethene utilizing metallo-supramolecular macrocycles as sensor-active substances. Sens. Actuators B Chem. 2006;119:302–307. doi: 10.1016/j.snb.2005.12.032. DOI
Sarkar A., Venkataramana P., Harathi N., Jyothsna T., Teja N.V. Design and optimization of ZnO nanostructured SAW-based ethylene gas sensor with modified electrode orientation. Adv. Sci. Technol. Eng. Syst. 2020;5:263–266. doi: 10.25046/aj050133. DOI
Sekhar P.K., Ludwig T., Wilhelm M., Graf D., Riheen M.A., Mathur S. Potentiometric Ethene Sensor for Postharvest Detection Applications. J. Electrochem. Soc. 2019;166:B1477–B1482. doi: 10.1149/2.0501915jes. DOI
Toldra-Reig F., Serra J.M. Development of potentiometric sensors for C2H4 detection. Sensors. 2018;18:2992. doi: 10.3390/s18092992. PubMed DOI PMC
Toldra-Reig F., Pastor D., Serra J.M. Influence of the Solid-Electrolyte Ionic Material in a Potentiometric Sensor for Ethylene Detection. J. Electrochem. Soc. 2019;166:B1343–B1355. doi: 10.1149/2.1171914jes. DOI
Zevenbergen M.A.G., Wouters D., Dam V.-A.T., Brongersma S.H., Crego-Calama M. Electrochemical sensing of ethylene employing a thin ionic-liquid layer. Anal. Chem. 2011;83:6300–6307. doi: 10.1021/ac2009756. PubMed DOI
Hu B., Sun D.W., Pu H., Wei Q. Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review. Trends Food Sci. Technol. 2019;91:66–82. doi: 10.1016/j.tifs.2019.06.010. DOI
Caprioli F., Quercia L. Ethylene detection methods in post-harvest technology: A review. Sens. Actuators B Chem. 2014;203:187–196. doi: 10.1016/j.snb.2014.06.109. DOI
Klusáčková M., Nesměrák K. Significant electrochemical sensors for ethylene and propylene: The state-of-the-art. Monatshefte fur Chemie. 2018;149:1503–1513. doi: 10.1007/s00706-018-2208-9. DOI
Kathirvelan J., Vijayaraghavan R. Review on sensitive and selective ethylene detection methods for fruit ripening application. Sens. Rev. 2020;40:421–435. doi: 10.1108/SR-10-2019-0251. DOI
Carter M.T., Stetter J.R., Findlay M.W., Patel V. Rational Design of Amperometric Gas Sensors with Ionic Liquid Electrolytes. ECS Trans. 2014;64:95–103. doi: 10.1149/06401.0095ecst. DOI
Carter M.T., Stetter J.R., Findlay M.W., Meulendyk B.J., Patel V., Peaslee D. Amperometric Gas Sensors: From Classical Industrial Health and Safety to Environmental Awareness and Public Health. ECS Trans. 2016;75:91–98. doi: 10.1149/07516.0091ecst. DOI
Stetter J.R., Carter M.T. High Volume Zero Power Low Cost PPB Level Printed Nano-Sensors for IoT. ECS Trans. 2017;77:1825–1832. doi: 10.1149/07711.1825ecst. DOI
Carter M.T., Stetter J.R., Findlay M.W., Patel V. Amperometric gas sensors with ionic liquid electrolytes. ECS Trans. 2014;58:7–18. doi: 10.1149/05834.0007ecst. DOI
Kuberský P., Syrový T., Hamáček A., Nešpůrek S., Syrová L. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem. 2015;209:1084–1090. doi: 10.1016/j.snb.2014.12.116. DOI
Kuberský P., Altšmíd J., Hamáček A., Nešpůrek S., Zmeškal O. An Electrochemical NO2 Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity. Sensors. 2015;15:28421–28434. doi: 10.3390/s151128421. PubMed DOI PMC
Navratil J., Kubersky P., Sedlak P., Hamacek A. 2020 43rd International Spring Seminar on Electronics Technology (ISSE) IEEE; New York, NY, USA: 2020. Preparation of Nitrogen Dioxide Sensor Utilizing Aerosol Jet Printing Technology; pp. 1–4.
Kuberský P., Hamáček a., Nespůrek S., Soukup R., Vik R. Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem. 2013;187:546–552. doi: 10.1016/j.snb.2013.03.081. DOI
Sedlak P., Gajdos A., Macku R., Majzner J., Sedlakova V., Holcman V., Kuberský P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020:1–12. PubMed PMC
Kuberský P., Sedlák P., Hamáček A., Nešpůrek S., Kuparowitz T., Šikula J., Majzner J., Sedlaková V., Grmela L., Syrový T. Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys. 2015;456:111–117. doi: 10.1016/j.chemphys.2014.10.021. DOI
Sedlák P., Kuberský P., Mívalt F. Effect of various flow rate on current fluctuations of amperometric gas sensors. Sens. Actuators B Chem. 2019;283:321–328. doi: 10.1016/j.snb.2018.12.006. DOI
Sedlák P., Kuberský P. The Effect of the Orientation Towards Analyte Flow on Electrochemical Sensor Performance and Current Fluctuations. Sensors. 2020;20:1038 PubMed PMC
Impact of Initial Cyclic Loading on Mechanical Properties and Performance of Nafion