Impact of Initial Cyclic Loading on Mechanical Properties and Performance of Nafion

. 2023 Jan 29 ; 23 (3) : . [epub] 20230129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36772526

Grantová podpora
22-14387J Czech Science Foundation
SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760 Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports

Nafion possesses many interesting properties such as a high ion-conductivity, hydrophilicity, and thermal and chemical stability that make this material highly suitable for many applications including fuel cells and various (bio-)chemical and physical sensors. However, the mechanical properties of a Nafion membrane that are known to be affected by the viscoplastic characteristics of the material itself have a strong impact on the performance of Nafion-based sensors. In this study, the mechanical properties of Nafion under the cyclic loading have been investigated in detail. After cyclic tensile loading (i.e., maximum elongation about 25% at a room temperature and relative humidity about 40%) a time-dependent recovery comes into play. This recovery process is also shown being strain-rate dependent. Our results reveal that the recovery behavior weakens after performing several stress-strain cycles. Present findings can be of a great importance in future design of various chemical and biological microsensors and nanosensors such as hydrogen or glucose ones.

Zobrazit více v PubMed

Schmidt-Rohr K., Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 2008;7:75–83. doi: 10.1038/nmat2074. PubMed DOI

Kusoglu A., Weber A.Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 2017;117:987–1104. doi: 10.1021/acs.chemrev.6b00159. PubMed DOI

Kafka V., Vokoun D. A Three-Scale Model of Basic Mechanical Properties of Nafion. Mech. Compos. Mater. 2015;50:763–776. doi: 10.1007/s11029-015-9466-y. DOI

Knake R., Jacquinot P., Hodgson A.W.E., Hauser P.C. Amperometric sensing in the gas phase. Anal. Chim. Acta. 2005;549:1–9. doi: 10.1016/j.aca.2005.06.007. DOI

Kubersky P., Navratil J., Syrovy T., Sedlak P., Nespurek S., Hamacek A. An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid. Sensors. 2021;21:711. doi: 10.3390/s21030711. PubMed DOI PMC

Zhang C., Ye W.B., Zhou K., Chen H.-Y., Yang J.-Q., Ding G., Chen X., Zhou Y., Zhou L., Li F., et al. Bioinspired Artificial Sensory Nerve Based on Nafion Memristor. Adv. Funct. Mater. 2019;29:1808783. doi: 10.1002/adfm.201808783. DOI

Zang D., Wang M., Yang Z. Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sens. Act. B Chem. 2019;292:187–195. doi: 10.1016/j.snb.2019.04.133. DOI

Torres A.C., Barsan M.M., Brett C.M. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chem. 2014;149:215–220. doi: 10.1016/j.foodchem.2013.10.114. PubMed DOI

Leng X., Luo D., Xu Z., Wang F. Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens. Act. B Chem. 2018;257:372–381. doi: 10.1016/j.snb.2017.10.174. DOI

Zhou Z.L., Kang T.F., Zhang Y., Cheng S.Y. Electrochemical sensor for formaldehyde based on Pt–Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchim. Acta. 2009;164:133–138. doi: 10.1007/s00604-008-0046-x. DOI

Jeon J.-Y., Kang B.-C., Ha T.-J. Flexible pH sensors based on printed nanocomposites of single-wall carbon nanotubes and Nafion. Appl. Surf. Sci. 2020;514:145956. doi: 10.1016/j.apsusc.2020.145956. DOI

Pathak A., Gupta B.D. Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix. Biosens. Bioelectron. 2019;133:205–214. doi: 10.1016/j.bios.2019.03.023. PubMed DOI

Babaei A., Taheri A.R. Nafion/Ni (OH) 2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sens. Act. B Chem. 2013;176:543–551. doi: 10.1016/j.snb.2012.09.021. DOI

Ensafi A.A., Jafari–Asl M., Rezaei B. A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide–Co3O4 nanocomposite. Talanta. 2013;103:322–329. doi: 10.1016/j.talanta.2012.10.063. PubMed DOI

Sun Y., Nguyen T.N.H., Anderson A., Cheng X., Gage T.E., Lim J., Zhang Z., Zhou H., Rodolakis F., Zhang Z., et al. In Vivo Glutamate Sensing inside the Mouse Brain with Perovskite Nickelate–Nafion Heterostructures. ACS Appl. Mater. Interfaces. 2020;12:24564–24574. doi: 10.1021/acsami.0c02826. PubMed DOI

Karimi M.B., Mohammadi F., Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review. Int. J. Hydrog. Energy. 2019;44:28919–28938. doi: 10.1016/j.ijhydene.2019.09.096. DOI

Corti H.R. Polymer electrolytes for low and high temperature PEM electrolyzers. Curr. Opin. Electrochem. 2022;36:101109. doi: 10.1016/j.coelec.2022.101109. DOI

Sijabat R.R., de Groot M.T., Moshtarikhah S., van der Schaaf J. Maxwell–Stefan model of multicomponent ion transport inside a monolayer Nafion membrane for intensified chlor-alkali electrolysis. J. Appl. Electrochem. 2019;49:353–368. doi: 10.1007/s10800-018-01283-x. DOI

Mohdlsa W., Hunt A., SosseinNia S.H. Sensing and Self-Sensing Actuation Methods for Ionic Polymer–Metal Composite (IPMC): A Review. Sensors. 2019;19:3967. doi: 10.3390/s19183967. PubMed DOI PMC

Brufau-Penella J., Puig-Vidal M., Giannone P., Graziani S., Strazzeri S. Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater. Struct. 2008;17:015009. doi: 10.1088/0964-1726/17/01/015009. DOI

Tang Y., Karlsson A.M., Santare M.H., Gilbert M., Cleghorn S., Johnson W.B. An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Mater. Sci. Eng. A. 2006;425:297–304. doi: 10.1016/j.msea.2006.03.055. DOI

Satterfield M.B., Majsztrik P.W., Ota H., Benziger J.B., Bocarsly A.B. Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells. J. Polym. Sci. B Polym. Phys. 2006;44:2327–2345. doi: 10.1002/polb.20857. DOI

Silberstein M.N., Boyce M.C. Constitutive modeling of the rate-, temperature-, and hydration-dependent deformation response of Nafion to monotonic and cyclic loading. J. Power Sources. 2010;195:5692–5706. doi: 10.1016/j.jpowsour.2010.03.047. DOI

Gebel G. Structural evolution of water-swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer. 2000;41:5829–5838. doi: 10.1016/S0032-3861(99)00770-3. DOI

Liu D., Kyriakides S., Case S.W., Lesko J.J., Li Y., McGrath J.E. Tensile behavior of Nafion and sulfonated poly(arylene ether sulfone) copolymer membranes and its morphological correlations. J. Polym. Sci. Part B Polym. Phys. 2006;44:1453–1465. doi: 10.1002/polb.20813. DOI

Modestino M.A., Paul D.K., Dishari S., Petrina S.A., Allen F.I., Hickner M.A., Karan K., Segalman R.A., Weber A.Z. Self-assembly and transport limitations in confined Nafion films. Macromolecules. 2013;46:867–873. doi: 10.1021/ma301999a. DOI

He Q., Yu M., Song L., Ding H., Zhang X., Dai Z. Experimental study and model analysis of the performance of IPMC membranes with various thickness. J. Bionic Eng. 2011;8:77–85. doi: 10.1016/S1672-6529(11)60001-2. DOI

Vokoun D., He Q., Heller L., Yu M., Dai Z. Modeling of IPMC cantilever’s displacements and blocking forces. J. Bionic Eng. 2015;12:142–151. doi: 10.1016/S1672-6529(14)60108-6. DOI

Kusoglu A., Karlsson A.M., Santare M.H. Structure–property relationship in ionomer membranes. Polymer. 2010;51:1457–1464. doi: 10.1016/j.polymer.2010.01.046. DOI

Qi Y., Lai Y.H. Mesoscale modeling of the influence of morphology on the mechanical properties of proton exchange membranes. Polymer. 2011;52:201–210. doi: 10.1016/j.polymer.2010.11.013. DOI

Freger V. Hydration of ionomers and Schroeder’s paradox in Nafion. J. Phys. Chem. B. 2009;113:24–36. doi: 10.1021/jp806326a. PubMed DOI

Silberstein M.N., Pillai P.V., Boyce M.C. Biaxial elastic-viscoplastic behavior of Nafion membranes. Polymer. 2010;52:529–539. doi: 10.1016/j.polymer.2010.11.032. DOI

Silberstein M.N., Boyce M.C. Hygro-thermal mechanical behavior of Nafion during constrained swelling. J. Power Sources. 2011;196:3452–3460. doi: 10.1016/j.jpowsour.2010.11.116. DOI

Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 2002;92:2899–2915. doi: 10.1063/1.1495888. DOI

Nemat-Nasser S., Zamani S. Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents. J. Appl. Phys. 2006;100:064310. doi: 10.1063/1.2221505. DOI

Solasi R., Zou Y., Huang X., Reifsnider K., Condit D. On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. J. Power Sources. 2007;167:366–377. doi: 10.1016/j.jpowsour.2007.02.025. DOI

Kusoglu A., Santare M.H., Karlsson A.M., Cleghorn S., Johnson W.B. Micromechanics model based on the nanostructure of PFSA membranes. J. Polym. Sci. Part B Polym. Phys. 2008;46:2404–2417. doi: 10.1002/polb.21573. DOI

Bauer F., Denneler S., Willert-Porada M. Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane. J. Polym. Sci. B Polym. Phys. 2005;43:786–795. doi: 10.1002/polb.20367. DOI

Su L., An Q., Li J., Wang L., Zhang Y., Zhou H., Xia R. Fatigue response of Nafion® XL membrane in biaxial tension: Temperature effects. Fatigue Fract. Eng. Mater. Struct. 2021;44:1675–1678. doi: 10.1111/ffe.13465. DOI

Xie T., Page K.A., Eastman S.A. Strain-Based Temperature Memory Effect for Nafion and Its Molecular Origins. Adv. Funct. Mater. 2011;21:2057–2066. doi: 10.1002/adfm.201002579. DOI

Van Humbeeck J., Stalmans R. In: Thermomechanical Properties of SMA: Shape Memory Materials. Otsuka K., Wayman C.M., editors. Cambridge University Press; Cambridge, UK: 1998.

Beleggia M., Vokoun D., De Graef M. Forces between a permanent magnet and a soft magnetic plate. IEEE Magn. Lett. 2012;3:0500204. doi: 10.1109/LMAG.2012.2214027. DOI

Jung H.Y., Kim J.W. Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC) Int. J. Hydrogen Energy. 2012;37:12580–12585. doi: 10.1016/j.ijhydene.2012.05.121. DOI

Kafka V., Vokoun D. On backstresses, overstresses, and internal stresses represented on the mesoscale. Int. J. Plast. 2005;21:1461–1480. doi: 10.1016/j.ijplas.2004.07.003. DOI

Colak O.U. Modeling deformation behavior of polymers with viscoplasticity theory based on overstress. Int. J. Plast. 2005;21:145–160. doi: 10.1016/j.ijplas.2004.04.004. DOI

Stachiv I., Alarcon E., Lamac M. Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. Metals. 2021;11:415. doi: 10.3390/met11030415. DOI

Stachiv I., Kuo C.-Y., Li W. Protein adsorption by nanomechanical mass spectrometry: Beyond the real-time molecular weighting. Front. Mol. Biosci. 2023;9:1058441. doi: 10.3389/fmolb.2022.1058441. PubMed DOI PMC

Oyefusi A., Chen J. Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding. Angew. Chem. 2017;56:8250–8253. doi: 10.1002/anie.201704443. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...