Impact of Initial Cyclic Loading on Mechanical Properties and Performance of Nafion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-14387J
Czech Science Foundation
SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760
Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports
PubMed
36772526
PubMed Central
PMC9920180
DOI
10.3390/s23031488
PII: s23031488
Knihovny.cz E-zdroje
- Klíčová slova
- Nafion, cyclic loading, mechanical properties, mechanical tests, viscoplastic properties,
- Publikační typ
- časopisecké články MeSH
Nafion possesses many interesting properties such as a high ion-conductivity, hydrophilicity, and thermal and chemical stability that make this material highly suitable for many applications including fuel cells and various (bio-)chemical and physical sensors. However, the mechanical properties of a Nafion membrane that are known to be affected by the viscoplastic characteristics of the material itself have a strong impact on the performance of Nafion-based sensors. In this study, the mechanical properties of Nafion under the cyclic loading have been investigated in detail. After cyclic tensile loading (i.e., maximum elongation about 25% at a room temperature and relative humidity about 40%) a time-dependent recovery comes into play. This recovery process is also shown being strain-rate dependent. Our results reveal that the recovery behavior weakens after performing several stress-strain cycles. Present findings can be of a great importance in future design of various chemical and biological microsensors and nanosensors such as hydrogen or glucose ones.
Zobrazit více v PubMed
Schmidt-Rohr K., Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 2008;7:75–83. doi: 10.1038/nmat2074. PubMed DOI
Kusoglu A., Weber A.Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 2017;117:987–1104. doi: 10.1021/acs.chemrev.6b00159. PubMed DOI
Kafka V., Vokoun D. A Three-Scale Model of Basic Mechanical Properties of Nafion. Mech. Compos. Mater. 2015;50:763–776. doi: 10.1007/s11029-015-9466-y. DOI
Knake R., Jacquinot P., Hodgson A.W.E., Hauser P.C. Amperometric sensing in the gas phase. Anal. Chim. Acta. 2005;549:1–9. doi: 10.1016/j.aca.2005.06.007. DOI
Kubersky P., Navratil J., Syrovy T., Sedlak P., Nespurek S., Hamacek A. An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid. Sensors. 2021;21:711. doi: 10.3390/s21030711. PubMed DOI PMC
Zhang C., Ye W.B., Zhou K., Chen H.-Y., Yang J.-Q., Ding G., Chen X., Zhou Y., Zhou L., Li F., et al. Bioinspired Artificial Sensory Nerve Based on Nafion Memristor. Adv. Funct. Mater. 2019;29:1808783. doi: 10.1002/adfm.201808783. DOI
Zang D., Wang M., Yang Z. Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sens. Act. B Chem. 2019;292:187–195. doi: 10.1016/j.snb.2019.04.133. DOI
Torres A.C., Barsan M.M., Brett C.M. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chem. 2014;149:215–220. doi: 10.1016/j.foodchem.2013.10.114. PubMed DOI
Leng X., Luo D., Xu Z., Wang F. Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens. Act. B Chem. 2018;257:372–381. doi: 10.1016/j.snb.2017.10.174. DOI
Zhou Z.L., Kang T.F., Zhang Y., Cheng S.Y. Electrochemical sensor for formaldehyde based on Pt–Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchim. Acta. 2009;164:133–138. doi: 10.1007/s00604-008-0046-x. DOI
Jeon J.-Y., Kang B.-C., Ha T.-J. Flexible pH sensors based on printed nanocomposites of single-wall carbon nanotubes and Nafion. Appl. Surf. Sci. 2020;514:145956. doi: 10.1016/j.apsusc.2020.145956. DOI
Pathak A., Gupta B.D. Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix. Biosens. Bioelectron. 2019;133:205–214. doi: 10.1016/j.bios.2019.03.023. PubMed DOI
Babaei A., Taheri A.R. Nafion/Ni (OH) 2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sens. Act. B Chem. 2013;176:543–551. doi: 10.1016/j.snb.2012.09.021. DOI
Ensafi A.A., Jafari–Asl M., Rezaei B. A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide–Co3O4 nanocomposite. Talanta. 2013;103:322–329. doi: 10.1016/j.talanta.2012.10.063. PubMed DOI
Sun Y., Nguyen T.N.H., Anderson A., Cheng X., Gage T.E., Lim J., Zhang Z., Zhou H., Rodolakis F., Zhang Z., et al. In Vivo Glutamate Sensing inside the Mouse Brain with Perovskite Nickelate–Nafion Heterostructures. ACS Appl. Mater. Interfaces. 2020;12:24564–24574. doi: 10.1021/acsami.0c02826. PubMed DOI
Karimi M.B., Mohammadi F., Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review. Int. J. Hydrog. Energy. 2019;44:28919–28938. doi: 10.1016/j.ijhydene.2019.09.096. DOI
Corti H.R. Polymer electrolytes for low and high temperature PEM electrolyzers. Curr. Opin. Electrochem. 2022;36:101109. doi: 10.1016/j.coelec.2022.101109. DOI
Sijabat R.R., de Groot M.T., Moshtarikhah S., van der Schaaf J. Maxwell–Stefan model of multicomponent ion transport inside a monolayer Nafion membrane for intensified chlor-alkali electrolysis. J. Appl. Electrochem. 2019;49:353–368. doi: 10.1007/s10800-018-01283-x. DOI
Mohdlsa W., Hunt A., SosseinNia S.H. Sensing and Self-Sensing Actuation Methods for Ionic Polymer–Metal Composite (IPMC): A Review. Sensors. 2019;19:3967. doi: 10.3390/s19183967. PubMed DOI PMC
Brufau-Penella J., Puig-Vidal M., Giannone P., Graziani S., Strazzeri S. Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater. Struct. 2008;17:015009. doi: 10.1088/0964-1726/17/01/015009. DOI
Tang Y., Karlsson A.M., Santare M.H., Gilbert M., Cleghorn S., Johnson W.B. An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Mater. Sci. Eng. A. 2006;425:297–304. doi: 10.1016/j.msea.2006.03.055. DOI
Satterfield M.B., Majsztrik P.W., Ota H., Benziger J.B., Bocarsly A.B. Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells. J. Polym. Sci. B Polym. Phys. 2006;44:2327–2345. doi: 10.1002/polb.20857. DOI
Silberstein M.N., Boyce M.C. Constitutive modeling of the rate-, temperature-, and hydration-dependent deformation response of Nafion to monotonic and cyclic loading. J. Power Sources. 2010;195:5692–5706. doi: 10.1016/j.jpowsour.2010.03.047. DOI
Gebel G. Structural evolution of water-swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer. 2000;41:5829–5838. doi: 10.1016/S0032-3861(99)00770-3. DOI
Liu D., Kyriakides S., Case S.W., Lesko J.J., Li Y., McGrath J.E. Tensile behavior of Nafion and sulfonated poly(arylene ether sulfone) copolymer membranes and its morphological correlations. J. Polym. Sci. Part B Polym. Phys. 2006;44:1453–1465. doi: 10.1002/polb.20813. DOI
Modestino M.A., Paul D.K., Dishari S., Petrina S.A., Allen F.I., Hickner M.A., Karan K., Segalman R.A., Weber A.Z. Self-assembly and transport limitations in confined Nafion films. Macromolecules. 2013;46:867–873. doi: 10.1021/ma301999a. DOI
He Q., Yu M., Song L., Ding H., Zhang X., Dai Z. Experimental study and model analysis of the performance of IPMC membranes with various thickness. J. Bionic Eng. 2011;8:77–85. doi: 10.1016/S1672-6529(11)60001-2. DOI
Vokoun D., He Q., Heller L., Yu M., Dai Z. Modeling of IPMC cantilever’s displacements and blocking forces. J. Bionic Eng. 2015;12:142–151. doi: 10.1016/S1672-6529(14)60108-6. DOI
Kusoglu A., Karlsson A.M., Santare M.H. Structure–property relationship in ionomer membranes. Polymer. 2010;51:1457–1464. doi: 10.1016/j.polymer.2010.01.046. DOI
Qi Y., Lai Y.H. Mesoscale modeling of the influence of morphology on the mechanical properties of proton exchange membranes. Polymer. 2011;52:201–210. doi: 10.1016/j.polymer.2010.11.013. DOI
Freger V. Hydration of ionomers and Schroeder’s paradox in Nafion. J. Phys. Chem. B. 2009;113:24–36. doi: 10.1021/jp806326a. PubMed DOI
Silberstein M.N., Pillai P.V., Boyce M.C. Biaxial elastic-viscoplastic behavior of Nafion membranes. Polymer. 2010;52:529–539. doi: 10.1016/j.polymer.2010.11.032. DOI
Silberstein M.N., Boyce M.C. Hygro-thermal mechanical behavior of Nafion during constrained swelling. J. Power Sources. 2011;196:3452–3460. doi: 10.1016/j.jpowsour.2010.11.116. DOI
Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 2002;92:2899–2915. doi: 10.1063/1.1495888. DOI
Nemat-Nasser S., Zamani S. Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents. J. Appl. Phys. 2006;100:064310. doi: 10.1063/1.2221505. DOI
Solasi R., Zou Y., Huang X., Reifsnider K., Condit D. On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. J. Power Sources. 2007;167:366–377. doi: 10.1016/j.jpowsour.2007.02.025. DOI
Kusoglu A., Santare M.H., Karlsson A.M., Cleghorn S., Johnson W.B. Micromechanics model based on the nanostructure of PFSA membranes. J. Polym. Sci. Part B Polym. Phys. 2008;46:2404–2417. doi: 10.1002/polb.21573. DOI
Bauer F., Denneler S., Willert-Porada M. Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane. J. Polym. Sci. B Polym. Phys. 2005;43:786–795. doi: 10.1002/polb.20367. DOI
Su L., An Q., Li J., Wang L., Zhang Y., Zhou H., Xia R. Fatigue response of Nafion® XL membrane in biaxial tension: Temperature effects. Fatigue Fract. Eng. Mater. Struct. 2021;44:1675–1678. doi: 10.1111/ffe.13465. DOI
Xie T., Page K.A., Eastman S.A. Strain-Based Temperature Memory Effect for Nafion and Its Molecular Origins. Adv. Funct. Mater. 2011;21:2057–2066. doi: 10.1002/adfm.201002579. DOI
Van Humbeeck J., Stalmans R. In: Thermomechanical Properties of SMA: Shape Memory Materials. Otsuka K., Wayman C.M., editors. Cambridge University Press; Cambridge, UK: 1998.
Beleggia M., Vokoun D., De Graef M. Forces between a permanent magnet and a soft magnetic plate. IEEE Magn. Lett. 2012;3:0500204. doi: 10.1109/LMAG.2012.2214027. DOI
Jung H.Y., Kim J.W. Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC) Int. J. Hydrogen Energy. 2012;37:12580–12585. doi: 10.1016/j.ijhydene.2012.05.121. DOI
Kafka V., Vokoun D. On backstresses, overstresses, and internal stresses represented on the mesoscale. Int. J. Plast. 2005;21:1461–1480. doi: 10.1016/j.ijplas.2004.07.003. DOI
Colak O.U. Modeling deformation behavior of polymers with viscoplasticity theory based on overstress. Int. J. Plast. 2005;21:145–160. doi: 10.1016/j.ijplas.2004.04.004. DOI
Stachiv I., Alarcon E., Lamac M. Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. Metals. 2021;11:415. doi: 10.3390/met11030415. DOI
Stachiv I., Kuo C.-Y., Li W. Protein adsorption by nanomechanical mass spectrometry: Beyond the real-time molecular weighting. Front. Mol. Biosci. 2023;9:1058441. doi: 10.3389/fmolb.2022.1058441. PubMed DOI PMC
Oyefusi A., Chen J. Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding. Angew. Chem. 2017;56:8250–8253. doi: 10.1002/anie.201704443. PubMed DOI