Protein adsorption by nanomechanical mass spectrometry: Beyond the real-time molecular weighting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36685281
PubMed Central
PMC9849248
DOI
10.3389/fmolb.2022.1058441
PII: 1058441
Knihovny.cz E-zdroje
- Klíčová slova
- mass sensing, mass spectrometry, molecular weight, molecule mechanical properties, protein adsorption, protein detection,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During past decades, enormous progress in understanding the mechanisms of the intermolecular interactions between the protein and surface at the single-molecule level has been achieved. These advances could only be possible by the ongoing development of highly sophisticated experimental methods such as atomic force microscopy, optical microscopy, surface plasmon resonance, ellipsometry, quartz crystal microbalance, conventional mass spectrometry, and, more recently, the nanomechanical systems. Here, we highlight the main findings of recent studies on the label-free single-molecule (protein) detection by nanomechanical systems including those focusing on the protein adsorption on various substrate surfaces. Since the nanomechanical techniques are capable of detecting and manipulating proteins even at the single-molecule level, therefore, they are expected to open a new way of studying the dynamics of protein functions. It is noteworthy that, in contrast to other experimental methods, where only given protein properties like molecular weight or protein stiffness can be determined, the nanomechanical systems enable a real-time measurement of the multiple protein properties (e.g., mass, stiffness, and/or generated surface stress), making them suitable for the study of protein adsorption mechanisms. Moreover, we also discuss the possible future trends in label-free detection and analysis of dynamics of protein complexes with these nanomechanical systems.
Zobrazit více v PubMed
Aebersold R., Mann M. (2003). Mass spectrometry-based proteomics. Nature 422, 198–207. 10.1038/nature01511 PubMed DOI
Angel T. E., Aryal U. K., Hengel S. M., Baker E. S., Kelly R. T., Robinson E. W., et al. (2012). Mass spectrometry-based proteomics: Existing capabilities and future directions. Chem. Soc. Rev. 41, 3912–3928. 10.1039/c2cs15331a PubMed DOI PMC
Boisen A., Dohn S., keller S. S., Schmid S., Tenje M. (2011). Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74, 036101. 10.1088/0034-4885/74/3/036101 DOI
Burg T. P., Godin M., Knudsen S. M., Shen W., Carlson G., Foster J. S., et al. (2007). Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069. 10.1038/nature05741 PubMed DOI
Chaste J., Eichler A., Moser J., Ceballos G., Rurali R., Bachtold A., et al. (2012). A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304. 10.1038/nnano.2012.42 PubMed DOI
De Pastina A., Maillard D., Villanueva L. G. (2018). Fabrication of suspended microchannel resonators with integrated piezoelectric transduction. Microelectron. Eng. 192, 83–87. 10.1016/j.mee.2018.02.011 DOI
Deng F., Zhai W., Yin Y., Peng C., Ning C. (2021). Advanced protein adsorption properties of a novel silicate-based bioceramic: A proteomic analysis. Bioact. Mat. 6, 208–218. 10.1016/j.bioactmat.2020.08.011 PubMed DOI PMC
Dohn S., Sandberg R., Svendsen W., Boisen A. (2005). Enhanced functionality of cantilever based mass sensors using higher modes. Appl. Phys. Lett. 86, 233501. 10.1063/1.1948521 DOI
Dohn S., Schmid S., Amiot F., Boisen A. (2007). Position and mass determination of multiple particles using cantilever based mass sensors. Appl. Phys. Lett. 97, 044103. 10.1063/1.3473761 DOI
Dominguez-Medina S., Fostner S., Defoort M., Sansa M., Stark A.-K., Halim M. A., et al. (2018). Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science 362, 918–922. 10.1126/science.aat6457 PubMed DOI
Dorignac J., Kalinowski A., Erramilli S., Mohanty P. (2006). Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition. Phys. Rev. Lett. 96, 186105. 10.1103/PhysRevLett.96.186105 PubMed DOI
Eisner V., Picard M., Hajnóczky G. (2018). Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell. Biol. 20, 755–765. 10.1038/s41556-018-0133-0 PubMed DOI PMC
Ekinci K., Yang Y. T., Roukes M. L. (2004). Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689. 10.1063/1.1642738 DOI
Eom K., Park H-S., Yoon D. S., Kwon T. (2011). Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Phys. Rep. 503, 115–163. 10.1016/j.physrep.2011.03.002 DOI
Erdogan R. T., Alkhaled M., Kaynak B. E., Alhmoud H., Pisheh H. S., Kellici M., et al. (2022). Atmospheric pressure mass spectrometry of single viruses and nanoparticles by nanoelectromechanical systems. ACS Nano 16, 3821–3833. 10.1021/acsnano.1c08423 PubMed DOI
Ghatkesar M. K., Barwich V., Braun T., Ramseyer J.-P., Gerber C., Hegner M., et al. (2007). Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology 18, 445502. 10.1088/0957-4484/18/44/445502 DOI
Gil-Santos E., Ramos D., Martínez F., RegúlezGarcía J. M. R., San Paulo A., Garcia R., et al. (2010). Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotech. 5, 641–645. 10.1038/nnano.2010.151 PubMed DOI
Gil-Santos E., Ruz J. J., Malvar O., Favero I., Lemaître A., Kosaka P. M., et al. (2020). Optomechanical detection of vibration modes of a single bacterium. Nat. Nanotech. 15, 469–474. 10.1038/s41565-020-0672-y PubMed DOI
Gruber G., Urgell C., Tavernarakis A., Stavrinadis A., Tepsic S., magen C., et al. (2019). Mass sensing for the advanced fabrication of nanomechanical resonators. Nano Lett. 19, 6987–6992. 10.1021/acs.nanolett.9b02351 PubMed DOI PMC
Gupta A. K., Nair P. R., Akin D., Ladisch M. R., Broyles S., Alam M. A., et al. (2006). Anomalous resonance in a nanomechanical biosensor. Proc. Natl. Acad. Sci. U. S. A. 5, 13362–13367. 10.1073/pnas.0602022103 PubMed DOI PMC
Hanay M. S., Kelber S., Naik A. K., Chi D., Hentz S., Bullard E., et al. (2012). Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 7, 602–608. 10.1038/nnano.2012.119 PubMed DOI PMC
Jensen K., Kim K., Zettl A. (2008). An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3, 533–537. 10.1038/nnano.2008.200 PubMed DOI
Johnson E. C. B., Dammer E. B., Duong D. M., Ping L., Zhou M., Yin L., et al. (2020). Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 26, 769–780. 10.1038/s41591-020-0815-6 PubMed DOI PMC
Juan J. M. S., No M. L., Schuh C. A. (2008). Superelasticity and shape memory in micro- and nanometer-scale pillars. Adv. Mat. 20, 272–278. 10.1002/adma.200701527 DOI
Karabalin R. B., Villanueva L. G., Matheny M. H., Sader J. E., Roukes M. L. (2012). Stress-induced variations in the stiffness of micro- and nanocantilever beams. Phys. Rev. Lett. 108, 236101. 10.1103/PhysRevLett.108.236101 PubMed DOI PMC
Keifer D. Z., Pierson E. E., Jarrold M. F. (2017). Charge detection mass spectrometry: Weighing heavier things. Analyst 142, 1654–1671. 10.1039/C7AN00277G PubMed DOI
Kidane S., Ishida H., Sawada K., Takahashi K. (2020). A suspended-graphene based optical interferometric surface stress sensor for selective biomolecular detection. Nanoscale Adv. 2, 1431–1436. 10.1039/C9NA00788A PubMed DOI PMC
Kim J., Song J., Kim K., Kim S., Song J., Kim N., et al. (2016). Hollow microtube resonators via silicon self-assembly toward subattogram mass sensing applications. Nano Lett. 16, 1537–1545. 10.1021/acs.nanolett.5b03703 PubMed DOI
Kozinsky I., Postma H. W. Ch., Bargatin I., Roukes M. L. (2006). Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88, 253101. 10.1063/1.2209211 DOI
Kubiak-Ossowska K., Jachimska B., Al Qaraghuli M., Mulheran P. A. (2019). Protein interactions with negatively charged inorganic surfaces. Curr. Opin. Colloid Interface Sci. 41, 104–117. 10.1016/j.cocis.2019.02.001 DOI
Lachut M. J., Sader J. E. (2007). Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102. 10.1103/PhysRevLett.99.206102 PubMed DOI
Lachut M. J., Sader J. E. (2012). Effect of surface stress on the stiffness of thin elastic plates and beams. Phys. Rev. B 85, 085440. 10.1103/PhysRevB.85.085440 PubMed DOI
Lamberti F-R., Palanchoke U., Geurts T. P. J., Gely M., Regord S., Banniard L., et al. (2022). Real-time sensing with multiplexed optomechanical resonators. Nano Lett. 22, 1866–1873. 10.1021/acs.nanolett.1c04017 PubMed DOI
Li M.-L., Wang W., Jin Z.-B. (2021). Circular RNAs in the central nervous system. Front. Mol. Biosci. 8, 629593. 10.3389/fmolb.2021.629593 PubMed DOI PMC
Liu W., Wang J., Yu Y., Chang Y., Tang N., Qu H., et al. (2015). Tuning the resonant frequency of resonators using molecular surface self-assembly approach. ACS Appl. Mat. Interfaces 7, 950–958. 10.1021/am507640g PubMed DOI
Lyu M., Zhao J., Kacem N., Liu P., Tang B., Xiong Z., et al. (2020). Exploiting nonlinearity to enhance the sensitivity of mode-localized mass sensor based on electrostatically coupled MEMS resonators. Int. J. Non-Linear Mech. 121, 103455. 10.1016/j.ijnonlinmec.2020.103455 DOI
Ma S., Li M., Wang S., Liu H., Wang H., Ren L., et al. (2022). Multiple particle identification by sequential frequency-shift measurement of a micro-plate. Int. J. Mech. Sci. 231, 107587. 10.1016/j.ijmecsci.2022.107587 DOI
Malvar O., Ruz J. J., Kosaka P. M., Dominguez C. M., Gil-Santos E., Calleja M., et al. (2016). Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators. Nat. Commun. 11, 13452. 10.1038/ncomms13452 PubMed DOI PMC
Minami K., Shiba K., Yoshikawa G. (2021). Sorption-induced static mode nanomechanical sensing with viscoelastic receptor layers for multistep injection-purge cycles. J. Appl. Phys. 129, 124503. 10.1063/5.0039045 DOI
Minami K., Yoshikawa G. (2021). Effects of partial attachment at the interface between receptor and substrate on nanomechanical cantilever sensing. Sens. Act. A Phys. 319, 112533. 10.1016/j.sna.2020.112533 DOI
Naik A. K., Hanay M. S., Hiebert W. K., Feng X. L., Roukes M. L. (2009). Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4, 445–450. 10.1038/nnano.2009.152 PubMed DOI PMC
Pfeifer C. R., Alveya C. M., Iriantoa J., Dischera D. E. (2017). Genome variation across cancers scales with tissue stiffness – An invasion-mutation mechanism and implications for immune cell infiltration. Curr. Opin. Syst. Biol. 2, 103–114. 10.1016/j.coisb.2017.04.005 PubMed DOI PMC
Richard P. J. (2019). Protein flexibility and stiffness enable efficient enzymatic catalysis. J. Am. Chem. Soc. 141, 3320–3331. 10.1021/jacs.8b10836 PubMed DOI PMC
Rocha R. T., Alfosail F., Zhao W., Younis M. I., Masri S. F. (2021). Nonparametric identification of a micro-electromechanical resonator. Mech. Syst. Sig. Proc. 161, 107932. 10.1016/j.ymssp.2021.107932 DOI
Ruz J. J., Malvar O., Gil-Santos E., Ramos D., Calleja M., Tamayo J. (2021). A review on theory and modelling of nanomechanical sensors for biological applications. Process 9, 164. 10.3390/pr9010164 DOI
Ruz J. J., Tamayo J., Pini V., Kosaka P. M., Calleja M. (2014) Physics of nanomechanical spectrometry of viruses. Sci. Rep. 4, 6051; 10.1038/srep06051 PubMed DOI PMC
Sader J. E., Hanay M. S., Neumann A. P., Roukes M. L. (2018). Mass spectrometry using nanomechanical systems: Beyond the point-mass approximation. Nano Lett. 18, 1608–1614. 10.1021/acs.nanolett.7b04301 PubMed DOI
Sage E., Brenac A., Alava T., Morel R., Dupré C., Hanay M. S., et al. (2015). Neutral particle mass spectrometry with nanomechanical systems. Nat. Commun. 6, 6482. 10.1038/ncomms7482 PubMed DOI PMC
Sage E., Sansa M., Fostner S., Defoort M., Gely M., Naik A. K., et al. (2018). Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nat. Commun. 9, 3283. 10.1038/s41467-018-05783-4 PubMed DOI PMC
Sansa M., Defoort M., Brenac A., Hermouet M., Banniard L., Fafin A., et al. (2020). Optomechanical mass spectrometry. Nat. Commun. 11, 3781. 10.1038/s41467-020-17592-9 PubMed DOI PMC
Satzer P., Svec F., Sekot G., Jungbauer A. (2015). Protein adsorption onto nanoparticles induces conformational changes: Particle size dependency, kinetics, and mechanisms. Eng. Life. Sci. 16, 238–246. 10.1002/elsc.201500059 PubMed DOI PMC
Schmid S., Dohn S., Boisen A. (2010). Real-time particle mass spectrometry based on resonant micro strings. Sensors 10, 8092–8100. 10.3390/s100908092 PubMed DOI PMC
Senese N. B., Rasenick M. M., Traynor J. R. (2018). The role of G-proteins and G-protein regulating proteins in depressive disorders. Front. Pharmacol. 9, 1289. 10.3389/fphar.2018.01289 PubMed DOI PMC
Shen L., de Sousa F. B., Tay N. B., Lang T. S., Kaixin V. L., Han J., et al. (2020). Deformation behavior of normal human enamel: A study by nanoindentation. J. Mech. Behav. Biomed. Mat. 108, 103799. 10.1016/j.jmbbm.2020.103799 PubMed DOI
Snijder J., Rose R. J., Veesler D., Johnson J. E., Heck A. J. R. (2013). Studying 18MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. 52, 4020–4023. 10.1002/anie.201210197 PubMed DOI PMC
Stachiv I., Alarcon E., Lamac M. (2021). Shape memory alloys and polymers for MEMS/NEMS applications: Review on recent findings and challenges in design, preparation, and characterization. Metals 11, 415. 10.3390/met11030415 DOI
Stachiv I., Fedorchenko A. I., Chen Y-L. (2012). Mass detection by means of the vibrating nanomechanical resonators. Appl. Phys. Lett. 100, 093110. 10.1063/1.3691195 DOI
Stachiv I., Gan L. (2019). Hybrid shape memory alloy-based nanomechanical resonators for ultrathin film elastic properties determination and heavy mass spectrometry. Materials 12, 3593. 10.3390/ma12213593 PubMed DOI PMC
Stachiv I., Gan L., Kuo C.-Y., Sittner P., Sevecek O. (2020). Mass spectrometry of heavy analytes and large biological aggregates by monitoring changes in the quality factor of nanomechanical resonators in air. ACS Sens. 5, 2128–2135. 10.1021/acssensors.0c00756 PubMed DOI
Stachiv I. (2014). Impact of surface and residual stresses and electro-/magnetostatic axial loading on the suspended nanomechanical based mass sensors: A theoretical study. J. Appl. Phys. 115, 214310. 10.1063/1.4880396 DOI
Stachiv I., Machu Z., Sevecek O., Jeng Y.-R., Li W.-L., Kotoul M., et al. (2022b). Achievable accuracy of resonating nanomechanical systems for mass sensing of larger analytes in GDa range. Int. J. Mech. Sci. 224, 107353. 10.1016/j.ijmecsci.2022.107353 DOI
Stachiv I., Machu Z., Sevecek O., Tuhovcak O., Kotoul M., Jeng Y.-R. (2022a). Resolving measurement of large (∼ GDa) chemical/biomolecule complexes with multimode nanomechanical resonators. Sens. Act. B Chem. 353, 131062. 10.1016/j.snb.2021.131062 DOI
Stachiv I., Sittner P. (2018). Nanocantilevers with adjustable static deflection and significantly tunable spectrum resonant frequencies for applications in nanomechanical mass sensors. Nanomaterials 8, 116. 10.3390/nano8020116 PubMed DOI PMC
Stachiv I., Sittner P., Olejnicek J., Landa M., Heller L. (2017). Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators. Appl. Phys. Lett. 111, 213105. 10.1063/1.4998006 DOI
Stachiv I., Zapomel J., Chen Y-L. (2014). Simultaneous determination of the elastic modulus and density/thickness of ultrathin films utilizing micro-/nanoresonators under applied axial force. J. Appl. Phys. 115, 124304. 10.1063/1.4869415 DOI
Stassi S., De Laurentis G., Chakraborty D., Bejtka K., Chiodoni A., Sader J. E., et al. (2019). Large-scale parallelization of nanomechanical mass spectrometry with weakly-coupled resonators. Nat. Commun. 10, 3647. 10.1038/s41467-019-11647-2 PubMed DOI PMC
Su Renay S-C., Gill E. E., Kim Y., Liu J. C. (2019). Characterization of resilin-like proteins with tunable mechanical properties. J. Mech. Behav. Biomed. Mat. 91, 68–75. 10.1016/j.jmbbm.2018.11.015 PubMed DOI PMC
Talha M., Ma Y., Kumar P., Lin Y., Singh A. (2019). Role of protein adsorption in the bio corrosion of metallic implants – a review. Colloids Surf. B Biointerfaces 176, 494–506. 10.1016/j.colsurfb.2019.01.038 PubMed DOI
Tamayo J., Kosaka P. M., Ruz J. J., San Paulo A., Calleja M. (2013). Biosensors based on nanomechanical systems. Chem. Soc. Rev. 42, 1287–1311. 10.1039/C2CS35293A PubMed DOI
Tamayo J., Ramos D., Mertens J., Calleja M. (2006). Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl. Phys. Lett. 89, 224104. 10.1063/1.2388925 DOI
Urbanska M., Muñoz H. E., Shaw B., Otto O., Manalis S. R., Di Carlo D., et al. (2020). A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat. Methods 17, 587–593. 10.1038/s41592-020-0818-8 PubMed DOI PMC
Wingert B., Krieger J., Li H., Bahar I. (2021). Adaptability and specificity: How do proteins balance opposing needs to achieve function? Curr. Opin. Struct. Biol. 67, 25–32. 10.1016/j.sbi.2020.08.009 PubMed DOI PMC
Xia C., Wang D. F., Ono T., Itoh T., Esashi M. (2021). Internal resonance in coupled oscillators – Part I: A double amplification mass sensing scheme without duffing nonlinearity. Mech. Syst. Sig. Proc. 159, 107886. 10.1016/j.ymssp.2021.107886 DOI
Xu B., Zhang P., Zhu J., Liu Z., Eichler A., Zheng X.-Q., et al. (2022). Nanomechanical resonators: Toward atomic scale. ACS Nano 16, 15545–15585. (accepted). 10.1021/acsnano.2c01673 PubMed DOI PMC
Yang B., Liu Z., Liu H., Nash M. A. (2020). Next generation methods for single-molecule force spectroscopy on polyproteins and receptor-ligand complexes. Front. Mol. Biosci. 7, 85. 10.3389/fmolb.2020.00085 PubMed DOI PMC
Yang D., Ward A., Halvorsen K., Wong W. P. (2016). Multiplexed single-molecule force spectroscopy using a centrifuge. Nat. Commun. 7, 11026. 10.1038/ncomms11026 PubMed DOI PMC
Yang Y. T., Callegari C., Feng X. L., Ekinci K. L., Rooukes M. L. (2006). Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586. 10.1021/nl052134m PubMed DOI
Yi X., Duan H. L. (2009). Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors. J. Mech. Phys. Solids 57, 1254–1266. 10.1016/j.jmps.2009.04.010 DOI
Yuksel M., Orhan E., Yanik C., Ari A. B., Demir A., Hanay M. S. (2019). Nonlinear nanomechanical mass spectrometry at the single-nanoparticle level. Nano Lett. 19, 3583–3589. 10.1021/acs.nanolett.9b00546 PubMed DOI
Zhang G., Li C., Wu S., Zhang Q. (2018). Label-free aptamer-based detection of microcystin-LR using a microcantilever array biosensor. Sens. Act. B Chem. 260, 42–47. 10.1016/j.snb.2017.12.112 DOI
Zhang W.-M., Hu K.-M., Peng Z.-K., Meng G. (2015). Tunable micro- and nanomechanical resonators. Sensors 15, 26478–26566. 10.3390/s151026478 PubMed DOI PMC
Zhao D., Liu Y., Zhang Q., Zhang Y., Zhang W., Duan Q., et al. (2019). Surface stress-based biosensor with stable conductive AuNPs network for biomolecules detection. Appl. Surf. Sci. 491, 443450–450. 10.1016/j.apsusc.2019.06.178 DOI
Impact of Initial Cyclic Loading on Mechanical Properties and Performance of Nafion