Nanocantilevers with Adjustable Static Deflection and Significantly Tunable Spectrum Resonant Frequencies for Applications in Nanomechanical Mass Sensors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29462996
PubMed Central
PMC5853747
DOI
10.3390/nano8020116
PII: nano8020116
Knihovny.cz E-zdroje
- Klíčová slova
- NiTi film, mass sensors, nanocantilever, nanoresonator, phase transformation, resonant frequency, shape memory alloy, static deflection,
- Publikační typ
- časopisecké články MeSH
Nanocantilevers have become key components of nanomechanical sensors that exploit changes in their resonant frequencies or static deflection in response to the environment. It is necessary that they can operate at a given, but adjustable, resonant frequency and/or static deflection ranges. Here we propose a new class of nanocantilevers with a significantly tunable spectrum of the resonant frequencies and changeable static deflection utilizing the unique properties of a phase-transforming NiTi film sputtered on the usual nanotechnology cantilever materials. The reversible frequency tuning and the adjustable static deflection are obtained by intentionally changing the Young's modulus and the interlayer stress of the NiTi film during its phase transformation, while the usual cantilever elastic materials guarantee a high frequency actuation (up to tens of MHz). By incorporating the NiTi phase transformation characteristic into the classical continuum mechanics theory we present theoretical models that account for the nanocantilever frequency shift and variation in static deflection caused by a phase transformation of NiTi film. Due to the practical importance in nanomechanical sensors, we carry out a complete theoretical analysis and evaluate the impact of NiTi film on the cantilever Young's modulus, static deflection, and the resonant frequencies. Moreover, the importance of proposed NiTi nanocantilever is illustrated on the nanomechanical based mass sensors. Our findings will be of value in the development of advanced nanotechnology sensors with intentionally-changeable physical and mechanical properties.
Zobrazit více v PubMed
Waggoner P.S., Craighead H.G. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip. 2007;7:1238–1255. doi: 10.1039/b707401h. PubMed DOI
Stachiv I., Fedorchenko A.I., Chen Y.-L. Mass detection by means of the vibrating nanomechanical resonators. Appl. Phys. Lett. 2012;100:093110. doi: 10.1063/1.3691195. DOI
Arlett J.L., Maloney J.R., Gudlewski B., Muluneh M., Roukes M.L. Self-Sensing Micro- and Nanocantilevers with Attonewton-Scale Force Resolution. Nano Lett. 2006;6:1000–1006. doi: 10.1021/nl060275y. DOI
Stachiv I. On the nanoparticle or macromolecule mass detection in fluid utilizing vibrating micro-/nanoresonators including carbon nanotubes. Sens. Lett. 2013;11:613–616. doi: 10.1166/sl.2013.2926. DOI
Fedorchenko A.I., Stachiv I., Wang W.-C. Methods of viscosity measurement by means of vibrating micro-/nano-mechanical resonators. Flow Meas. Instrum. 2013;32:84–89. doi: 10.1016/j.flowmeasinst.2013.03.003. DOI
Boisen A., Dohn S., Keller S.S., Schmid S., Tenje M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 2011;74:036101. doi: 10.1088/0034-4885/74/3/036101. DOI
Eom K., Park H.S., Yoon D.S., Kwon T. Nanomechanical resonators and their applications in biological/chemical detection. Phys. Rep. 2011;503:115–163. doi: 10.1016/j.physrep.2011.03.002. DOI
Kozinsky I., Postma H.W.C., Bargatin I., Roukes M.L. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 2006;88:253101. doi: 10.1063/1.2209211. DOI
Karabalin R.B., Villanueva L.G., Matheny M.H., Sader J.E., Roukes M.L. Stress-Induced variations in stiffness of micro- and nanocantilever beams. Phys. Rev. Lett. 2012;108:236101. doi: 10.1103/PhysRevLett.108.236101. PubMed DOI PMC
Stachiv I. Impact of surface and residual stresses and electro-/magnetostatic axial loading on the suspended nanomechanical based mass sensors: A theoretical study. J. Appl. Phys. 2014;115:214310. doi: 10.1063/1.4880396. DOI
Stachiv I., Fang T.-H., Jeng Y.-R. Mass detection in viscous fluid utilizing vibrating micro- and nanomechanical mass sensors under applied axial tensile force. Sensors. 2015;15:19351–19368. doi: 10.3390/s150819351. PubMed DOI PMC
Zhang W.-M., Hu K.-M., Meng G. Tunable micro- and nanomechanical resonators. Sensors. 2015;15:26478–26566. doi: 10.3390/s151026478. PubMed DOI PMC
Kafumbe S.M.M., Burdess J.S., Harris A.J. Frequency adjustment of microelectromechanical cantilevers using electrostatic pull down. J. Micromech. Microeng. 2005;15:1033–1039. doi: 10.1088/0960-1317/15/5/020. DOI
Karabalin R.B., Matheny M.H., Feng X.L., Defaÿ E., Le Rhun G., Marcoux C., Hentz S., Andreucci P., Roukes M.L. Piezoelectric nanoelectromechanical resonators based on aluminum nitride films. Appl. Phys. Lett. 2009;95:103111. doi: 10.1063/1.3216586. DOI
Lachut M.J., Sader J.E. Effect of surface stress on the stiffness of cantilever plates: Influence of cantilever geometry. Phys. Rev. Lett. 2007;99:206102. doi: 10.1103/PhysRevLett.99.206102. PubMed DOI
Stachiv I., Zapomel J., Chen Y.-L. Simultaneous determination of the elastic modulus and density/thickness of ultrathin films utilizing micro-/nanoresonators under applied axial force. J. Appl. Phys. 2014;115:124304. doi: 10.1063/1.4869415. DOI
Stachiv I., Fang T.-H., Chen T.-H. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid. AIP Adv. 2015;5:117140. doi: 10.1063/1.4936421. PubMed DOI
Pini V., Tamayo J., Gil-Santos E., Ramos D., Kosaka P., Tong H.-D., van Rijn C., Calleja M. Shedding light on axial stress effect on resonance frequencies of nanocantilevers. ACS Nano. 2011;19:4269–4275. doi: 10.1021/nn200623c. PubMed DOI
Massel F., Heikkila T.T., Pirkkalainen J.M., Cho S.U., Saloniemi H., Hakonen P.J., Sillanpaa M.A. Microwave amplification with nanomechanical resonators. Nature. 2011;480:351–354. doi: 10.1038/nature10628. PubMed DOI
Duerig T.W., Melton K.N., Stockel D., Wayman C.M. Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann; New York, NY, USA: 1990.
Miyazaki S., Fu Y.Q., Huang W.M. Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press; Cambridge, UK: 2009.
Sedmak P., Pilch J., Heller L., Kopecek J., Wright J., Sedlak P., Frost M., Sittner P. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science. 2016;353:559–562. doi: 10.1126/science.aad6700. PubMed DOI
Li X.H., Mao S.C., Zang K.T., Liu Y., Guo Z.X., Wang S.B., Zhang Y.F., Yin X.Q. An in situ TEM study of the size effect on the thermally induced martensitic transformation in nanoscale NiTi shape memory alloy. J. Alloys Compd. 2014;588:337–342. doi: 10.1016/j.jallcom.2013.11.119. DOI
Daly S., Ravuchandran G., Bhattacharya K. Stress-induced martensitic phase transformation in thin sheets of Nitinol. Acta Mater. 2007;55:3593–3600. doi: 10.1016/j.actamat.2007.02.011. DOI
Duerig T., Pelton A., Stöckel D. An overview of nitinol medical applications. Mat. Sci. Eng. A. 1999;273:149–160. doi: 10.1016/S0921-5093(99)00294-4. DOI
Huang W., Toh W. Training two-way shape memory allow by reheat treatment. Mat. Sci. Lett. 2000;19:1549–1550. doi: 10.1023/A:1006721022185. DOI
Juan J.M.S., No M.L., Schuh C.A. Superelasticity and Shape Memory in Micro- and Nanometer-scale Pillars. Adv. Mater. 2008;20:272–278. doi: 10.1002/adma.200701527. DOI
Kohl M. Shape Memory Microactuators. Springer; Berlin/Heidelberg, Germany: 2004.
Song S.-H., Lee J.-Y., Rodrigue H., Choi I.-K., Kang Y.J., Ahn S.-H. 35 Hz shape memory alloy actuator with bending-twisting mode. Sci. Rep. 2016;6:21118. doi: 10.1038/srep21118. PubMed DOI PMC
Villanueva A., Joshi K., Blottman J., Priya S. A bio-inspired shape memory alloy composite (BISMAC) actuator. Smart Mater. Struct. 2010;19:025013. doi: 10.1088/0964-1726/19/2/025013. DOI
Sittner P., Heller L., Pilch J., Curfs C., Alonso T., Favier D. Young’s modulus of austenite and martensite phases in superelastic NiTi wires. J. Mater. Eng. Perform. 2014;23:2303–2314. doi: 10.1007/s11665-014-0976-x. DOI
Lee H.-J., Ramirez A.G. Crystallization and phase transformations in amorphous NiTi films for microelectromechanical systems. Appl. Phys. Lett. 2004;88:1146. doi: 10.1063/1.1783011. DOI
Chluba C., Ge W., de Miranda R.L., Strobel J., Kienle L., Quandt E., Wutting M. Ultralow-fatigue shape memory alloy films. Science. 2015;348:1004–1007. doi: 10.1126/science.1261164. PubMed DOI
Heller L., Sittner P., Pilch J. Impact of Heat Effects on Superelasticity. In: Olson G.B., Lieberman D.S., Saxena A., editors. International Conference on Martensitic Transformation (ICOMAT) John Wiley & Sons Inc.; Hoboken, NJ, USA: 2010. DOI
Fu Y., Du H., Zhang S. Sputtering deposited TiNi films: Relationship among processing, stress evolution and phase transformation behaviors. Surf. Coat. Technol. 2003;167:120–128. doi: 10.1016/S0257-8972(02)00896-4. DOI
Hou H., Hamilton R.F., Horn M.-W., Jin Y. NiTi thin films prepared by biased target ion beam deposition co-sputtering from elemental Ni and Ti targets. Thin Solid Films. 2014;570:1–6. doi: 10.1016/j.tsf.2014.09.004. DOI
Stachiv I., Sittner P., Olejnicek J., Landa M., Heller L. Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators. Appl. Phys. Lett. 2017;111:213105. doi: 10.1063/1.4998006. DOI
Villanueva L.G., Karabalin R.B., Matheny M.H., Chi D., Sader J.E., Roukes M.L. Nonlinearity in nanomechanical cantilevers. Phys. Rev. B. 2013;87:024304. doi: 10.1103/PhysRevB.87.024304. DOI
Sittner P., Vokoun D., Dayananda G.N., Stalmans R. Recovery stress generation in shape memory Ti50Ni45Cu5 thin wires. Mater. Sci. Eng. A. 2000;286:298–311. doi: 10.1016/S0921-5093(00)00816-9. DOI
Stachiv I., Kuo C.-Y., Fang T.-H., Mortet V. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams. AIP Adv. 2016;6:045005. doi: 10.1063/1.4947031. DOI
Ghidelli M., Sebastiani M., Collet C., Guillemet R. Determination of the elastic moduli and residual stresses of freestanding Au-TiW bilayer thin films by nanoindentation. Mater. Des. 2016;106:436–445. doi: 10.1016/j.matdes.2016.06.003. DOI
Stachiv I., Sittner P., Jeng Y.-R., Vokoun D. Active frequency tuning of the cantilever nanoresonator utilizing a phase transformation of NiTi thin film. J. Vibroeng. 2017;19:5161–5169. doi: 10.21595/jve.2017.18887. DOI
Jaccodine R.J., Schlegel W.A. Measurement of strains at Si-SiO2 interface. J. Appl. Phys. 1966;37:2429. doi: 10.1063/1.1708831. DOI
Scharzer N., Richter F. On the Determination of Film Stress from Substrate Bending: Stoney’s Formula and Its Limits. [(accessed on 15 December 2017)];2006 :1–17. Available online: http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600111.
Zapomel J., Stachiv I., Ferfecki P. A novel method combining Monte-Carlo-FEM simulations and experiments for simultaneous evaluation of the ultrathin film mass density and Young’s modulus. Mech. Syst. Signal Process. 2016;66–67:223–231. doi: 10.1016/j.ymssp.2015.06.022. DOI
Sader J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscopy. J. Appl. Phys. 1998;84:64–76. doi: 10.1063/1.368002. DOI
Timoshenko S., Goodier J.N. Theory of Elasticity. 2nd ed. The Maple Press Comp.; New York, NY, USA: 1951.
Fu Y.Q., Zhang S., Wu M.J., Huang W.M., Du H.J., Luo J.K., Flewitt A.J., Milne W.I. On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films. 2006;515:80–86. doi: 10.1016/j.tsf.2005.12.039. DOI
Jensen K., Kwanpyo K., Zettl A. An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 2008;3:533–537. doi: 10.1038/nnano.2008.200. PubMed DOI
Berger R., Lang H.P., Gerber C., Gimzewski K., Meyer E. Surface stress in the self-assembly of alkenethiols on gold. Science. 1997;276:2021–2024. doi: 10.1126/science.276.5321.2021. DOI
Dohn S., Schmid S., Amiot F., Boisen A. Position and mass determination of multiple particles using cantilever based mass sensors. Appl. Phys. Lett. 2010;97:044103. doi: 10.1063/1.3473761. DOI
Kwon T.Y., Eom K., Park J.H., Yoon D.S., Kim T.S., Lee H.L. In situ real time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid. Appl. Phys. Lett. 2007;90:223903. doi: 10.1063/1.2741053. DOI
Gupta A.K., Nair P.R., Akin D., Ladisch M.R., Broyles S., Alam M.A., Bashir R. Anomalous resonance in a nanomechanical biosensor. Proc. Natl. Acad. Sci. USA. 2006;103:13362–13367. doi: 10.1073/pnas.0602022103. PubMed DOI PMC
Tamayo J., Ramos D., Mertens J., Calleja M. Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl. Phys. Lett. 2006;89:224104. doi: 10.1063/1.2388925. DOI
Ramos D., Tamayo J., Mertens J., Calleja M. Origin of the response of nanomechanical resonators to bacteria adsorption. J. Appl. Phys. 2006;100:106105. doi: 10.1063/1.2370507. DOI
Fedorchenko A.I., Stachiv I., Wang A.-B., Wang W.-C. Fundamental frequencies of mechanical systems with N-piecewise constant properties. J. Sound Vib. 2008;317:490–495. doi: 10.1016/j.jsv.2008.06.029. DOI
Shape Memory Behaviour of PMMA-Coated NiTi Alloy under Thermal Cycle
Protein adsorption by nanomechanical mass spectrometry: Beyond the real-time molecular weighting