Shape Memory Behaviour of PMMA-Coated NiTi Alloy under Thermal Cycle

. 2022 Jul 20 ; 14 (14) : . [epub] 20220720

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35890708

Both poly(methyl methacrylate) (PMMA) and NiTi possess shape memory and biocompatibility behavior. The macroscale properties of PMMA-NiTi composites depend immensely on the quality of the interaction between two components. NiTi shape memory alloy (SMA) and superelastic (SE) sheets were spin coated on one side with PMMA. The composite was prepared by the spin coating method with an alloy-to-polymer-thickness ratio of 1:3. The bending stiffness and radius of curvature were calculated by using numerical and experimental methods during thermal cycles. The experimental radius curvatures in actuation have good agreement with the model. The change in shape results from the difference in coefficients of thermal expansion between PMMA and NiTi. Actuation temperatures were between 0 and 100 °C for the SMA-PMMA composite with a change in curvature from 10 to 120 mm with fixed Young's modulus of PMMA at 3 GPa, and a change in Young's modulus of NiTi from 30 to 70 GPa. PMMA-NiTi composites are useful as actuators and sensor elements.

Zobrazit více v PubMed

Huang W.M., Ding Z., Wang C.C., Wei J., Zhao Y., Purnawali H. Shape memory materials. Mater. Today. 2010;13:54–61. doi: 10.1016/S1369-7021(10)70128-0. DOI

Wei Z.G., Sandstroröm R., Miyazaki S. Shape-memory materials and hybrid composites for smart systems—Part I shape-memory materials. J. Mater. Sci. 1998;33:3743–3762. doi: 10.1023/A:1004692329247. DOI

Otsuka K., Wayman C.M. Shape Memory Materials. Cambridge University Press; Cambridge, UK: 1998.

Sun L., Huang W., Ding Z., Zhao Y., Wang C., Purnawali H., Tang C. Stimulus-responsive shape memory materials: A review. Mater. Des. 2012;33:577–640. doi: 10.1016/j.matdes.2011.04.065. DOI

Jani J.M., Leary M., Subic A., Gibson M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014;56:1078–1113. doi: 10.1016/j.matdes.2013.11.084. DOI

Yamauchi K., Ohkata I., Tsuchiya K., Miyazaki S. Shape Memory and Superelastic Alloys: Applications and Technologies. Elsevier; Amsterdam, The Netherlands: 2011.

Morgan N.B. Medical shape memory alloy applications—The market and its products. Mater. Sci. Eng. A. 2004;378:16–23. doi: 10.1016/j.msea.2003.10.326. DOI

Fang C., Wang W. Shape Memory Alloys for Seismic Resilience. Springer; New York, NY, USA: 2020.

Hassani F.A., Shi Q., Wen F., He T., Haroun A., Yang Y., Feng Y., Lee C. Smart materials for smart healthcare-moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 2020;1:92–124. doi: 10.1016/j.smaim.2020.07.005. DOI

Gök M.O., Bilir M.Z., Gürcüm B.H. Shape-memory applications in textile design. Procedia–Soc. Behav. Sci. 2015;195:2160–2169. doi: 10.1016/j.sbspro.2015.06.283. DOI

Pineda-Castillo S.A., Stiles A.M., Bohnstedt B.N., Lee H., Liu Y., Lee C.-H. Shape Memory Polymer-Based Endovascular Devices: Design Criteria and Future Perspective. Polymers. 2022;14:2526. doi: 10.3390/polym14132526. PubMed DOI PMC

Song J.J., Chang H., Naguib H.E. Biocompatible shape memory polymer actuators with high force capabilities. Eur. Polym. J. 2015;67:186–198. doi: 10.1016/j.eurpolymj.2015.03.067. DOI

Huang W.M., Zhao Y., Wang C.C., Ding Z., Purnawali H., Tang C., Zhang J.L. Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. J. Polym. Res. 2012;19:9952. doi: 10.1007/s10965-012-9952-z. DOI

van der Schaar P.J., Dijksman J.F., Gast H.B.-D., Shimizu J., van Lelyveld N., Zou H., Iordanov V., Wanke C., Siersema P.D. A novel ingestible electronic drug delivery and monitoring device. Gastrointest. Endosc. 2013;78:520–528. doi: 10.1016/j.gie.2013.03.170. PubMed DOI

Khodagholy D., Gelinas J.N., Thesen T., Doyle W.K., Devinsky O., Malliaras G., Buzsáki G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 2015;18:310–315. doi: 10.1038/nn.3905. PubMed DOI PMC

Kim D.-H., Lu N., Ma R., Kim Y.-S., Kim R.-H., Wang S., Wu J., Won S.M., Tao H., Islam A., et al. Epidermal electronics. Science. 2011;333:838–843. doi: 10.1126/science.1206157. PubMed DOI

Lee W.W., Tan Y.J., Yao H., Li S., See H.H., Hon M., Ng K.A., Xiong B., Ho J.S., Tee B.C.K. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 2019;4:eaax2198. doi: 10.1126/scirobotics.aax2198. PubMed DOI

Samal S., Prado Ede Tyc O., Sittner P. Shape setting in super-elastic NiTi ribbon. IOP Conf. Ser.: Mater. Sci. Eng. 2018;461:012075. doi: 10.1088/1757-899X/461/1/012075. DOI

Xiang Z., Wang H., Pastorin G., Lee C. Development of a flexible and disposable microneedle-fluidic-system with finger-driven drug loading and delivery functions for inflammation treatment. J. Microelectromechan. Syst. 2015;24:565–574. doi: 10.1109/JMEMS.2015.2429675. DOI

Vokoun D., Sysel P., Heller L., Kadeřávek L., Svatuška M., Goryczka T., Kafka V., Šittner P. NiTi-Polyimide Composites prepared using Thermal Imidization Process. JMEPEG. 2016;25:1993–1999. doi: 10.1007/s11665-016-2019-2. DOI

Zhang W., Lin S., Wang C., Hu J., Li C., Zhuang Z., Zhou Y., Mathies R.A., Yang C.J. PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip. 2009;9:3088–3094. doi: 10.1039/b907254c. PubMed DOI

Fung C.K., Zhang M.Q., Chan R.H., Li W.J. A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements; Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS); Miami Beach, FL, USA. 30 January–3 February 2005.

Shiraishi N., Kimura M., Ando Y. Development of PMMA-based gas sensor and its evaluation using a VOC dilution flow system. Microelectron. Eng. 2014;119:115–221. doi: 10.1016/j.mee.2014.03.021. DOI

Çapan I., Tanmcr C., Erdoğan M., Hassan A.K. Characterisation and vapour sensing properties of spin coated thin films of anthracene labelled PMMA polymer. Mater. Sci. Eng. C. 2009;29:1114–1117. doi: 10.1016/j.msec.2008.09.028. DOI

Çapan İ., Tarımcı Ç., Hassan A.K., Tanrısever T. Characterisation and optical vapour properties of PMMA thin films. Mater. Sci. Eng. C. 2009;29:140–143. doi: 10.1016/j.msec.2008.05.021. DOI

Stefanescu E.A., Tan X., Lin Z., Bowler N., Kessler M.R. Multifunctional fiberglass-reinforced PMMA-BaTiO3 structural/dielectric Composites. Polymer. 2011;52:2016–2024. doi: 10.1016/j.polymer.2011.02.050. DOI

Humbeeck Van J., Stalmans R. In: Thermomechanical Properties of SMA: Shape Memory Materials. Otsuka K., Wayman C.M., editors. Cambridge University Press; Cambridge, UK: 1998.

Zhang X.M., Fernandez J., Guilemany J.M. Role of external applied stress on the two-way shape memory effect. Mater. Sci. Eng. A. 2006;438:431–435. doi: 10.1016/j.msea.2006.02.093. DOI

Leu C.C., Vokoun D., Hu C.T. Two-way shape memory effect of TiNi alloys induced by hydrogenation. Metall. Mater. Trans. A. 2002;33:17–23. doi: 10.1007/s11661-002-0002-z. DOI

Wu Z.H., Vokoun D., Leu C.C., Hu C.T. A two-way shape memory study on Ni-rich NiTi shape memory alloy by combination of the all-round treatment and the R-phase transformation. J. Mater. Eng. Perform. 2017;26:5801–5810. doi: 10.1007/s11665-017-3059-y. DOI

Šittner P., Landa M., Lukáš P., Novák V. R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals. Mech. Mater. 2006;38:475–492. doi: 10.1016/j.mechmat.2005.05.025. DOI

Chang C.Y., Vokoun D., Hu C.T. Two-Way Shape Memory Effect of NiTi Alloy Induced by Constraint Aging Treatment at Room Temperature. Metall. Mater. Trans. A. 2001;32:1629–1634. doi: 10.1007/s11661-001-0141-7. DOI

Vokoun D., Hu C.T. Two-way shape memory effect in Fe-28.8 at.% Pd melt-spun ribbons. Scr. Mater. 2002;47:453–457. doi: 10.1016/S1359-6462(02)00149-5. DOI

Samal S., Blanco I. Investigation of Dispersion, Interfacial Adhesion of Isotropic and Anisotropic Filler in Polymer Composite. Appl. Sci. 2021;11:8561. doi: 10.3390/app11188561. DOI

Samal S., Molnárová O., Průša F., Kopeček J., Heller L., Šittner P., Škodová M., Abate L., Blanco I. Net-Shape NiTi Shape Memory Alloy by Spark Plasma Sintering Method. Appl. Sci. 2021;11:1802. doi: 10.3390/app11041802. DOI

Samal S., Tyc O., Cizek J., Klecka J., Lukáč F., Molnárová O., de Prado E., Weiss Z., Kopeček J., Heller L., et al. Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties. Coatings. 2021;11:610. doi: 10.3390/coatings11050610. DOI

Semaltianos N.G. Spin-Coated PMMA films. Microelectron. J. 2007;38:754–761. doi: 10.1016/j.mejo.2007.04.019. DOI

Naghashian S., Fox B.L., Barnett M.R. Actuation curvature limits for a composite beam with embedded shape memory alloy wires. Smart Mater. Struct. 2014;23:065002. doi: 10.1088/0964-1726/23/6/065002. DOI

Dahnke C., Reeb A., Pottmeyer F., Weidenmann K.A., Tekkaya A.E. Thermomechanical behavior of shape memory alloy metal matrix composite actuator manufactured by composite extrusion. Smart Mater. Struct. 2019;28:055022. doi: 10.1088/1361-665X/ab0ef5. DOI

Lester B.T., Baxevanis T., Chemisky Y., Lagoudas D.C. Review and Perspectives: Shape Memory Alloy Composite Systems. Acta Mech. 2015;226:3907–3960. doi: 10.1007/s00707-015-1433-0. DOI

Samal S., Tyc O., Heller L., Šittner P., Malik M., Poddar P., Catauro M., Blanco I. Study of Interfacial Adhesion between Nickel-Titanium Shape Memory Alloy and a Polymer Matrix by Laser Surface Pattern. Appl. Sci. 2020;10:2172. doi: 10.3390/app10062172. DOI

Stachiv I., Alarcon E., Lamac M. Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. Metals. 2021;11:415. doi: 10.3390/met11030415. DOI

Clyne T.W. Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding. Key Eng. Mater. 1996;116–117:307–330.

Pryor R.W. Multiphysics Modeling Using Comsol: A First Principles Approach. Jones and Bartlett Publishers; Sudbury, Canada: 2011.

Samal S. Interface failure and delamination resistance of fiber-reinforced geopolymer composite by simulation and experimental method. Cem. Concr. Compos. 2022;128:104420. doi: 10.1016/j.cemconcomp.2022.104420. DOI

Cohades A., Michaud V. Shape memory alloy in fiber-reinforced polymer composites. Adv. Ind. Eng. Polym. Res. 2018;1:66–81.

Park J., Headings L.M., Dapino M.J., Baur J.W., Tandon G.P. Investigation of interfacial shear stresses, shape fixity, and actuation strain in composites incorporating shape memory polymers and shape memory alloys. Front. Mater. 2015;2:12. doi: 10.3389/fmats.2015.00012. DOI

Wilson S.A., Jourdain R.P.J., Zhang Q., Dorey R.A., Bowen C.R., Willander M., Ul Wahab Q., Willander M., Al-hilli S.M., Nur O., et al. New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng. R Rep. 2007;56 doi: 10.1016/j.mser.2007.03.001. DOI

Kohl M., Dittmann D., Quandt E., Winzek B. Thin film shape memory microvalves with adjustable operation temperature. Sens. Actuators. 2000;83:214. doi: 10.1016/S0924-4247(99)00386-6. DOI

Sun Z., Xu Y., Wang W. Experimentation of the Bilinear Elastic Behavior of Plain-Woven GFRP Composite with Embedded SMA Wires. Polymers. 2019;11:405. doi: 10.3390/polym11030405. PubMed DOI PMC

Tsoi K.A., Schrooten J., Zheng Y., Stalmans R. Part II. Thermomechanical characteristics of shape memory alloy composites. Mater. Sci. Eng. 2004;368:299–310. doi: 10.1016/j.msea.2003.11.007. DOI

Parthenios J., Psarras G., Galiotis C. Adaptive composites incorporating shape memory alloy wires. Part 2: Development of internal recovery stresses as a function of activation temperature. Compos. Part A Appl. Sci. Manuf. 2001;32:1735–1747. doi: 10.1016/S1359-835X(01)00022-7. DOI

Bollas D., Pappas P., Parthenios J., Galiotis C. Stress generation by shape memory alloy wires embedded in polymer composites. Acta Mater. 2007;55:5489–5499. doi: 10.1016/j.actamat.2007.06.006. DOI

Michaud V. Can shape memory alloy composites be smart? Scr. Mater. 2004;50:249–253. doi: 10.1016/j.scriptamat.2003.09.016. DOI

Stachiv I., Sittner P. Nanocantilevers with Adjustable Static Deflection and Significantly Tunable Spectrum Resonant Frequencies for Applications in Nanomechanical Mass Sensors. Nanomaterials. 2018;8:116. doi: 10.3390/nano8020116. PubMed DOI PMC

Stachiv I., Gan L. Simple Non-Destructive Method of Ultrathin Film Material Properties and Generated Internal Stress Determination Using Microcantilevers Immersed in Air. Coatings. 2019;9:486. doi: 10.3390/coatings9080486. DOI

Taheri-Behrooz F., Taheri F., Hosseinzadeh R. Characterization of a shape memory alloy hybrid composite plate subject to static loading. Mater. Des. 2011;32:2923–2933. doi: 10.1016/j.matdes.2010.11.068. DOI

Lei H., Wang Z., Zhou B., Tong L., Wang X. Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model. Mater. Des. 2012;40:138–147. doi: 10.1016/j.matdes.2012.03.037. DOI

Tsoi K.A., Stalmans R., Schrooten J. Transformational Behavior of Constrained Shape Memory Alloys. Acta Mater. 2002;50:3535–3544. doi: 10.1016/S1359-6454(02)00145-3. DOI

Taya M., Liang Y., Namli O.C., Tamagawa H., Howie T. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory, polymer composite. Smart Mater. Struct. 2013;22:105003. doi: 10.1088/0964-1726/22/10/105003. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...