Shape Memory Behaviour of PMMA-Coated NiTi Alloy under Thermal Cycle
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35890708
PubMed Central
PMC9324931
DOI
10.3390/polym14142932
PII: polym14142932
Knihovny.cz E-zdroje
- Klíčová slova
- NiTi, PMMA, curvature, radius, shape recovery, thermal cycles,
- Publikační typ
- časopisecké články MeSH
Both poly(methyl methacrylate) (PMMA) and NiTi possess shape memory and biocompatibility behavior. The macroscale properties of PMMA-NiTi composites depend immensely on the quality of the interaction between two components. NiTi shape memory alloy (SMA) and superelastic (SE) sheets were spin coated on one side with PMMA. The composite was prepared by the spin coating method with an alloy-to-polymer-thickness ratio of 1:3. The bending stiffness and radius of curvature were calculated by using numerical and experimental methods during thermal cycles. The experimental radius curvatures in actuation have good agreement with the model. The change in shape results from the difference in coefficients of thermal expansion between PMMA and NiTi. Actuation temperatures were between 0 and 100 °C for the SMA-PMMA composite with a change in curvature from 10 to 120 mm with fixed Young's modulus of PMMA at 3 GPa, and a change in Young's modulus of NiTi from 30 to 70 GPa. PMMA-NiTi composites are useful as actuators and sensor elements.
Zobrazit více v PubMed
Huang W.M., Ding Z., Wang C.C., Wei J., Zhao Y., Purnawali H. Shape memory materials. Mater. Today. 2010;13:54–61. doi: 10.1016/S1369-7021(10)70128-0. DOI
Wei Z.G., Sandstroröm R., Miyazaki S. Shape-memory materials and hybrid composites for smart systems—Part I shape-memory materials. J. Mater. Sci. 1998;33:3743–3762. doi: 10.1023/A:1004692329247. DOI
Otsuka K., Wayman C.M. Shape Memory Materials. Cambridge University Press; Cambridge, UK: 1998.
Sun L., Huang W., Ding Z., Zhao Y., Wang C., Purnawali H., Tang C. Stimulus-responsive shape memory materials: A review. Mater. Des. 2012;33:577–640. doi: 10.1016/j.matdes.2011.04.065. DOI
Jani J.M., Leary M., Subic A., Gibson M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014;56:1078–1113. doi: 10.1016/j.matdes.2013.11.084. DOI
Yamauchi K., Ohkata I., Tsuchiya K., Miyazaki S. Shape Memory and Superelastic Alloys: Applications and Technologies. Elsevier; Amsterdam, The Netherlands: 2011.
Morgan N.B. Medical shape memory alloy applications—The market and its products. Mater. Sci. Eng. A. 2004;378:16–23. doi: 10.1016/j.msea.2003.10.326. DOI
Fang C., Wang W. Shape Memory Alloys for Seismic Resilience. Springer; New York, NY, USA: 2020.
Hassani F.A., Shi Q., Wen F., He T., Haroun A., Yang Y., Feng Y., Lee C. Smart materials for smart healthcare-moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 2020;1:92–124. doi: 10.1016/j.smaim.2020.07.005. DOI
Gök M.O., Bilir M.Z., Gürcüm B.H. Shape-memory applications in textile design. Procedia–Soc. Behav. Sci. 2015;195:2160–2169. doi: 10.1016/j.sbspro.2015.06.283. DOI
Pineda-Castillo S.A., Stiles A.M., Bohnstedt B.N., Lee H., Liu Y., Lee C.-H. Shape Memory Polymer-Based Endovascular Devices: Design Criteria and Future Perspective. Polymers. 2022;14:2526. doi: 10.3390/polym14132526. PubMed DOI PMC
Song J.J., Chang H., Naguib H.E. Biocompatible shape memory polymer actuators with high force capabilities. Eur. Polym. J. 2015;67:186–198. doi: 10.1016/j.eurpolymj.2015.03.067. DOI
Huang W.M., Zhao Y., Wang C.C., Ding Z., Purnawali H., Tang C., Zhang J.L. Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. J. Polym. Res. 2012;19:9952. doi: 10.1007/s10965-012-9952-z. DOI
van der Schaar P.J., Dijksman J.F., Gast H.B.-D., Shimizu J., van Lelyveld N., Zou H., Iordanov V., Wanke C., Siersema P.D. A novel ingestible electronic drug delivery and monitoring device. Gastrointest. Endosc. 2013;78:520–528. doi: 10.1016/j.gie.2013.03.170. PubMed DOI
Khodagholy D., Gelinas J.N., Thesen T., Doyle W.K., Devinsky O., Malliaras G., Buzsáki G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 2015;18:310–315. doi: 10.1038/nn.3905. PubMed DOI PMC
Kim D.-H., Lu N., Ma R., Kim Y.-S., Kim R.-H., Wang S., Wu J., Won S.M., Tao H., Islam A., et al. Epidermal electronics. Science. 2011;333:838–843. doi: 10.1126/science.1206157. PubMed DOI
Lee W.W., Tan Y.J., Yao H., Li S., See H.H., Hon M., Ng K.A., Xiong B., Ho J.S., Tee B.C.K. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 2019;4:eaax2198. doi: 10.1126/scirobotics.aax2198. PubMed DOI
Samal S., Prado Ede Tyc O., Sittner P. Shape setting in super-elastic NiTi ribbon. IOP Conf. Ser.: Mater. Sci. Eng. 2018;461:012075. doi: 10.1088/1757-899X/461/1/012075. DOI
Xiang Z., Wang H., Pastorin G., Lee C. Development of a flexible and disposable microneedle-fluidic-system with finger-driven drug loading and delivery functions for inflammation treatment. J. Microelectromechan. Syst. 2015;24:565–574. doi: 10.1109/JMEMS.2015.2429675. DOI
Vokoun D., Sysel P., Heller L., Kadeřávek L., Svatuška M., Goryczka T., Kafka V., Šittner P. NiTi-Polyimide Composites prepared using Thermal Imidization Process. JMEPEG. 2016;25:1993–1999. doi: 10.1007/s11665-016-2019-2. DOI
Zhang W., Lin S., Wang C., Hu J., Li C., Zhuang Z., Zhou Y., Mathies R.A., Yang C.J. PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip. 2009;9:3088–3094. doi: 10.1039/b907254c. PubMed DOI
Fung C.K., Zhang M.Q., Chan R.H., Li W.J. A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements; Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS); Miami Beach, FL, USA. 30 January–3 February 2005.
Shiraishi N., Kimura M., Ando Y. Development of PMMA-based gas sensor and its evaluation using a VOC dilution flow system. Microelectron. Eng. 2014;119:115–221. doi: 10.1016/j.mee.2014.03.021. DOI
Çapan I., Tanmcr C., Erdoğan M., Hassan A.K. Characterisation and vapour sensing properties of spin coated thin films of anthracene labelled PMMA polymer. Mater. Sci. Eng. C. 2009;29:1114–1117. doi: 10.1016/j.msec.2008.09.028. DOI
Çapan İ., Tarımcı Ç., Hassan A.K., Tanrısever T. Characterisation and optical vapour properties of PMMA thin films. Mater. Sci. Eng. C. 2009;29:140–143. doi: 10.1016/j.msec.2008.05.021. DOI
Stefanescu E.A., Tan X., Lin Z., Bowler N., Kessler M.R. Multifunctional fiberglass-reinforced PMMA-BaTiO3 structural/dielectric Composites. Polymer. 2011;52:2016–2024. doi: 10.1016/j.polymer.2011.02.050. DOI
Humbeeck Van J., Stalmans R. In: Thermomechanical Properties of SMA: Shape Memory Materials. Otsuka K., Wayman C.M., editors. Cambridge University Press; Cambridge, UK: 1998.
Zhang X.M., Fernandez J., Guilemany J.M. Role of external applied stress on the two-way shape memory effect. Mater. Sci. Eng. A. 2006;438:431–435. doi: 10.1016/j.msea.2006.02.093. DOI
Leu C.C., Vokoun D., Hu C.T. Two-way shape memory effect of TiNi alloys induced by hydrogenation. Metall. Mater. Trans. A. 2002;33:17–23. doi: 10.1007/s11661-002-0002-z. DOI
Wu Z.H., Vokoun D., Leu C.C., Hu C.T. A two-way shape memory study on Ni-rich NiTi shape memory alloy by combination of the all-round treatment and the R-phase transformation. J. Mater. Eng. Perform. 2017;26:5801–5810. doi: 10.1007/s11665-017-3059-y. DOI
Šittner P., Landa M., Lukáš P., Novák V. R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals. Mech. Mater. 2006;38:475–492. doi: 10.1016/j.mechmat.2005.05.025. DOI
Chang C.Y., Vokoun D., Hu C.T. Two-Way Shape Memory Effect of NiTi Alloy Induced by Constraint Aging Treatment at Room Temperature. Metall. Mater. Trans. A. 2001;32:1629–1634. doi: 10.1007/s11661-001-0141-7. DOI
Vokoun D., Hu C.T. Two-way shape memory effect in Fe-28.8 at.% Pd melt-spun ribbons. Scr. Mater. 2002;47:453–457. doi: 10.1016/S1359-6462(02)00149-5. DOI
Samal S., Blanco I. Investigation of Dispersion, Interfacial Adhesion of Isotropic and Anisotropic Filler in Polymer Composite. Appl. Sci. 2021;11:8561. doi: 10.3390/app11188561. DOI
Samal S., Molnárová O., Průša F., Kopeček J., Heller L., Šittner P., Škodová M., Abate L., Blanco I. Net-Shape NiTi Shape Memory Alloy by Spark Plasma Sintering Method. Appl. Sci. 2021;11:1802. doi: 10.3390/app11041802. DOI
Samal S., Tyc O., Cizek J., Klecka J., Lukáč F., Molnárová O., de Prado E., Weiss Z., Kopeček J., Heller L., et al. Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties. Coatings. 2021;11:610. doi: 10.3390/coatings11050610. DOI
Semaltianos N.G. Spin-Coated PMMA films. Microelectron. J. 2007;38:754–761. doi: 10.1016/j.mejo.2007.04.019. DOI
Naghashian S., Fox B.L., Barnett M.R. Actuation curvature limits for a composite beam with embedded shape memory alloy wires. Smart Mater. Struct. 2014;23:065002. doi: 10.1088/0964-1726/23/6/065002. DOI
Dahnke C., Reeb A., Pottmeyer F., Weidenmann K.A., Tekkaya A.E. Thermomechanical behavior of shape memory alloy metal matrix composite actuator manufactured by composite extrusion. Smart Mater. Struct. 2019;28:055022. doi: 10.1088/1361-665X/ab0ef5. DOI
Lester B.T., Baxevanis T., Chemisky Y., Lagoudas D.C. Review and Perspectives: Shape Memory Alloy Composite Systems. Acta Mech. 2015;226:3907–3960. doi: 10.1007/s00707-015-1433-0. DOI
Samal S., Tyc O., Heller L., Šittner P., Malik M., Poddar P., Catauro M., Blanco I. Study of Interfacial Adhesion between Nickel-Titanium Shape Memory Alloy and a Polymer Matrix by Laser Surface Pattern. Appl. Sci. 2020;10:2172. doi: 10.3390/app10062172. DOI
Stachiv I., Alarcon E., Lamac M. Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. Metals. 2021;11:415. doi: 10.3390/met11030415. DOI
Clyne T.W. Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding. Key Eng. Mater. 1996;116–117:307–330.
Pryor R.W. Multiphysics Modeling Using Comsol: A First Principles Approach. Jones and Bartlett Publishers; Sudbury, Canada: 2011.
Samal S. Interface failure and delamination resistance of fiber-reinforced geopolymer composite by simulation and experimental method. Cem. Concr. Compos. 2022;128:104420. doi: 10.1016/j.cemconcomp.2022.104420. DOI
Cohades A., Michaud V. Shape memory alloy in fiber-reinforced polymer composites. Adv. Ind. Eng. Polym. Res. 2018;1:66–81.
Park J., Headings L.M., Dapino M.J., Baur J.W., Tandon G.P. Investigation of interfacial shear stresses, shape fixity, and actuation strain in composites incorporating shape memory polymers and shape memory alloys. Front. Mater. 2015;2:12. doi: 10.3389/fmats.2015.00012. DOI
Wilson S.A., Jourdain R.P.J., Zhang Q., Dorey R.A., Bowen C.R., Willander M., Ul Wahab Q., Willander M., Al-hilli S.M., Nur O., et al. New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng. R Rep. 2007;56 doi: 10.1016/j.mser.2007.03.001. DOI
Kohl M., Dittmann D., Quandt E., Winzek B. Thin film shape memory microvalves with adjustable operation temperature. Sens. Actuators. 2000;83:214. doi: 10.1016/S0924-4247(99)00386-6. DOI
Sun Z., Xu Y., Wang W. Experimentation of the Bilinear Elastic Behavior of Plain-Woven GFRP Composite with Embedded SMA Wires. Polymers. 2019;11:405. doi: 10.3390/polym11030405. PubMed DOI PMC
Tsoi K.A., Schrooten J., Zheng Y., Stalmans R. Part II. Thermomechanical characteristics of shape memory alloy composites. Mater. Sci. Eng. 2004;368:299–310. doi: 10.1016/j.msea.2003.11.007. DOI
Parthenios J., Psarras G., Galiotis C. Adaptive composites incorporating shape memory alloy wires. Part 2: Development of internal recovery stresses as a function of activation temperature. Compos. Part A Appl. Sci. Manuf. 2001;32:1735–1747. doi: 10.1016/S1359-835X(01)00022-7. DOI
Bollas D., Pappas P., Parthenios J., Galiotis C. Stress generation by shape memory alloy wires embedded in polymer composites. Acta Mater. 2007;55:5489–5499. doi: 10.1016/j.actamat.2007.06.006. DOI
Michaud V. Can shape memory alloy composites be smart? Scr. Mater. 2004;50:249–253. doi: 10.1016/j.scriptamat.2003.09.016. DOI
Stachiv I., Sittner P. Nanocantilevers with Adjustable Static Deflection and Significantly Tunable Spectrum Resonant Frequencies for Applications in Nanomechanical Mass Sensors. Nanomaterials. 2018;8:116. doi: 10.3390/nano8020116. PubMed DOI PMC
Stachiv I., Gan L. Simple Non-Destructive Method of Ultrathin Film Material Properties and Generated Internal Stress Determination Using Microcantilevers Immersed in Air. Coatings. 2019;9:486. doi: 10.3390/coatings9080486. DOI
Taheri-Behrooz F., Taheri F., Hosseinzadeh R. Characterization of a shape memory alloy hybrid composite plate subject to static loading. Mater. Des. 2011;32:2923–2933. doi: 10.1016/j.matdes.2010.11.068. DOI
Lei H., Wang Z., Zhou B., Tong L., Wang X. Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model. Mater. Des. 2012;40:138–147. doi: 10.1016/j.matdes.2012.03.037. DOI
Tsoi K.A., Stalmans R., Schrooten J. Transformational Behavior of Constrained Shape Memory Alloys. Acta Mater. 2002;50:3535–3544. doi: 10.1016/S1359-6454(02)00145-3. DOI
Taya M., Liang Y., Namli O.C., Tamagawa H., Howie T. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory, polymer composite. Smart Mater. Struct. 2013;22:105003. doi: 10.1088/0964-1726/22/10/105003. DOI