Mass Detection in Viscous Fluid Utilizing Vibrating Micro- and Nanomechanical Mass Sensors under Applied Axial Tensile Force
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
26287190
PubMed Central
PMC4570374
DOI
10.3390/s150819351
PII: s150819351
Knihovny.cz E-resources
- Keywords
- beam under tension, cantilever mass sensors, carbon nanotube, mass detection in fluid, mass resonator sensors, resonant frequency, viscous fluid,
- Publication type
- Journal Article MeSH
Vibrating micro- and nanomechanical mass sensors are capable of quantitatively determining attached mass from only the first three (two) measured cantilever (suspended) resonant frequencies. However, in aqueous solutions that are relevant to most biological systems, the mass determination is challenging because the quality factor (Q-factor) due to fluid damping decreases and, as a result, usually just the fundamental resonant frequencies can be correctly identified. Moreover, for higher modes the resonance coupling, noise, and internal damping have been proven to strongly affect the measured resonances and, correspondingly, the accuracy of estimated masses. In this work, a technique capable of determining the mass for the cantilever and also the position of nanobeads attached on the vibrating micro-/nanomechanical beam under intentionally applied axial tensile force from the measured fundamental flexural resonant frequencies is proposed. The axial force can be created and controlled through an external electrostatic or magnetostatic field. Practicality of the proposed technique is confirmed on the suspended multi-walled carbon nanotube and the rectangular silicon cantilever-based mass sensors. We show that typically achievable force resolution has a negligibly small impact on the accuracy of mass measurement.
Department of Mechanical Engineering National Chung Cheng University Chiayi County 62102 Taiwan
Institute of Physics Czech Academy of Sciences Prague 18221 Czech Republic
See more in PubMed
Arlett J.L., Maloney J.R., Gudlewski B., Muluneh M., Roukes M.L. Self-sensing micro- and nanocantilevers with attonewton-scale force resolution. Nano Lett. 2006;6:1000–1006. doi: 10.1021/nl060275y. DOI
O’Connell A.D., Hofheinz M., Ansmann M., Bialczak R.C., Lenander M., Lucero E., Neeley M., Sank D., Wang H., Weides M., et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697–703. doi: 10.1038/nature08967. PubMed DOI
Rugar D., Budakian R., Mamin H.J., Chui B.W. Single spin detection by magnetic resonance force microscopy. Nature. 2004;430:329–332. doi: 10.1038/nature02658. PubMed DOI
Stachiv I., Vokoun D., Jeng Y.-R. Measurement of Young’s modulus and volumetric mass density/thickness of ultrathin films utilizing resonant based mass sensors. Appl. Phys. Lett. 2014;104 doi: 10.1063/1.4866417. DOI
Jensen K., Kim K., Zettl A. An atomic-resolution mass sensor. Nat. Nanotechnol. 2008;3:533–537. doi: 10.1038/nnano.2008.200. PubMed DOI
Boisen A., Dohn S., Keller S.S., Smid S., Tenje M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 2011;74 doi: 10.1088/0034-4885/74/3/036101. DOI
Hanay M.S., Kelber S., Naik A.K., Hentz S., Bullard E.C., Colinet E., Duraffourg L., Roukes M.L. Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 2012;7:602–608. doi: 10.1038/nnano.2012.119. PubMed DOI PMC
Dohn S., Svendsen W., Boisen A., Hansen O. Mass and position determination of attached particles on cantilever based mass sensors. Rev. Sci. Instrum. 2007;78 doi: 10.1063/1.2804074. PubMed DOI
Dohn S., Schmid S., Amiot F., Boisen A. Position and mass determination of multiple particles using cantilever based mass sensors. Appl. Phys. Lett. 2010;97 doi: 10.1063/1.3473761. DOI
Stachiv I., Fedorchenko A.I., Chen Y.-L. Mass detection by means of the vibrating nanomechanical resonators. Appl. Phys. Lett. 2012;100 doi: 10.1063/1.3691195. DOI
Timoshenko S., Young D.H., Weaver W. Vibration Problems in Engineering. 4th ed. Wiley; New York, NY, USA: 1974.
Raman A., Melcher J., Tung R. Cantilever dynamics in atomic force microscopy. Nano Today. 2008;3:20–27. doi: 10.1016/S1748-0132(08)70012-4. DOI
Verbridge S.S., Bellan L.M., Parpia J.M., Craighead H.G. Optically driven resonance of nanoscale flexural oscillators in liquid. Nano Lett. 2006;6:2109–2114. doi: 10.1021/nl061397t. PubMed DOI
Sawano S., Arie T., Akita S. Carbon nanotube resonator in liquid. Nano Lett. 2010;10:3395–3398. doi: 10.1021/nl101292b. PubMed DOI
Braun T., Barwich V., Ghatkesar K., Bredekamp A.H., Gerber C., Hegner M., Lang H.P. Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys. Rev. E. 2005;72 doi: 10.1103/PhysRevE.72.031907. PubMed DOI
Stachiv I. On the nanoparticle or macromolecule mass detection in fluid utilizing vibrating micro-/nanoresonators including carbon nanotubes. Sens. Lett. 2013;11:613–616. doi: 10.1166/sl.2013.2926. DOI
Stachiv I. Impact of surface and residual stresses and electro-/magnetostatic axial loading on the suspended nanomechanical based mass sensors: A theoretical study. J. Appl. Phys. 2014;115 doi: 10.1063/1.4880396. DOI
Wei X., Chen Q., Xu S., Peng L., Zuo J. Beam to string transition of vibrating carbon nanotubes under axial tension. Adv. Funct. Mater. 2009;19:1753–1758. doi: 10.1002/adfm.200900105. DOI
Yoon G., Park H.-J., Na S., Eom K. Mesoscopic model for mechanical characterization of biological protein materials. J. Comput. Chem. 2009;30:873–880. doi: 10.1002/jcc.21107. PubMed DOI
Kwon T.Y., Eom K., Park J.H., Yoon D.S., Kim T.S., Lee H.L. In situ real-time time monitoring of biomolecular interactions based on the resonating microcantilevers immersed in a viscous fluid. Appl. Phys. Lett. 2007;90 doi: 10.1063/1.2741053. DOI
Wasisto H.S., Merzsch S., Stranz A., Waag A., Uhde E., Salthammer T., Peiner E. Femtogram aerosol nanoparticle mass sensing utilising vertical silicon nanowire resonators. IET Micro. Nano Lett. 2013;8:554–558. doi: 10.1049/mnl.2013.0208. DOI
Wasisto H.S., Huang K., Merzsch S., Stranz A., Waag A., Peiner E. Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications. Microsyst. Technol. 2014;20:571–584. doi: 10.1007/s00542-013-1992-8. DOI
Chon J.W.M., Mulvaney P., Sader J.E. Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. J. Appl. Phys. 2000;87 doi: 10.1063/1.372455. DOI
Sader J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998;84:64–66. doi: 10.1063/1.368002. DOI
Paul M.R, Cross M.C. Stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid. Phys. Rev. Lett. 2004;92 doi: 10.1103/PhysRevLett.92.235501. PubMed DOI
Basak S., Raman A., Garimella S.V. Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J. Appl. Phys. 2006;99 doi: 10.1063/1.2202232. DOI
Brumley D.R., Willcox M., Sader J.E. Oscillation of cylinders of rectangular cross section immersed in fluid. Phys. Fluids. 2010;22 doi: 10.1063/1.3397926. DOI
Landau L.D., Lifshitz E.M. Fluid Mechanics. Pergamon Press; Oxford, UK: 1987.
Rosenhead L. Laminar Boundary Layers. Claredon Press; Oxford, UK: 1963.
Stachiv I., Zapomel J., Chen Y.-L. Simultaneous determination of the elastic modulus and density/thickness of ultrathin films utilizing micro-/nanoresonators under applied axial force. J. Appl. Phys. 2014;115 doi: 10.1063/1.4869415. DOI
Fedorchenko A.I., Stachiv I., Wang A.B, Wang W.-C. Fundamental frequencies of mechanical systems with N-piecewise constant properties. J. Sound Vib. 2008;317:490–495. doi: 10.1016/j.jsv.2008.06.029. DOI
Mohanty P., Harrington D.A., Roukes M.L. Measurement of small forces in micron-sized resonators. Phys. B. 2000;284:2143–2144. doi: 10.1016/S0921-4526(99)02997-X. DOI
Mamin H.J., Rugar D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 2001;79 doi: 10.1063/1.1418256. DOI
Bargatin E., Myers B., Arlett J., Gudlewski B., Roukes M.L. Sensitive detection of nanomechanical motion using piezoresistive signal downmixing. Appl. Phys. Lett. 2005;86 doi: 10.1063/1.1896103. DOI
Chiu H.-W., Hung P., Postma H.W.C., Bockrath M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 2008;8:4342–4346. doi: 10.1021/nl802181c. PubMed DOI
Purcell S.T., Vincent P., Journet C., Bihn V.T. Tuning of nanotube mechanical resonances by electric field pulling. Phys. Rev. Lett. 2002;89 doi: 10.1103/PhysRevLett.89.276103. PubMed DOI
Kafumbe S.M.M., Burdess J.S., Harris A.J. Frequency adjustment of microelectromechanical cantilevers using electrostatic pull down. J. Micromech. Microeng. 2005;15:1033–1036. doi: 10.1088/0960-1317/15/5/020. DOI
Salahun E., Queffelec P., Tanne G., Adenot A.-L., Acher O. Correlation between magnetic properties of layered ferromagnetic/dielectric material and tunable microwave device applications. J. Appl. Phys. 2002;91:544–549. doi: 10.1063/1.1461066. DOI
Elmer F.J., Dreier M. The eigen frequencies of a rectangular AFM cantilever in a medium. J. Appl. Phys. 1997;81 doi: 10.1063/1.365379. DOI
Lebedev N.N., Skalskaya I.P., Ufland Y.S. Worked Problems in Applied Mathematics. Dover Publications; New York, NY, USA: 1979.