• This record comes from PubMed

Mass Detection in Viscous Fluid Utilizing Vibrating Micro- and Nanomechanical Mass Sensors under Applied Axial Tensile Force

. 2015 Aug 06 ; 15 (8) : 19351-68. [epub] 20150806

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Vibrating micro- and nanomechanical mass sensors are capable of quantitatively determining attached mass from only the first three (two) measured cantilever (suspended) resonant frequencies. However, in aqueous solutions that are relevant to most biological systems, the mass determination is challenging because the quality factor (Q-factor) due to fluid damping decreases and, as a result, usually just the fundamental resonant frequencies can be correctly identified. Moreover, for higher modes the resonance coupling, noise, and internal damping have been proven to strongly affect the measured resonances and, correspondingly, the accuracy of estimated masses. In this work, a technique capable of determining the mass for the cantilever and also the position of nanobeads attached on the vibrating micro-/nanomechanical beam under intentionally applied axial tensile force from the measured fundamental flexural resonant frequencies is proposed. The axial force can be created and controlled through an external electrostatic or magnetostatic field. Practicality of the proposed technique is confirmed on the suspended multi-walled carbon nanotube and the rectangular silicon cantilever-based mass sensors. We show that typically achievable force resolution has a negligibly small impact on the accuracy of mass measurement.

See more in PubMed

Arlett J.L., Maloney J.R., Gudlewski B., Muluneh M., Roukes M.L. Self-sensing micro- and nanocantilevers with attonewton-scale force resolution. Nano Lett. 2006;6:1000–1006. doi: 10.1021/nl060275y. DOI

O’Connell A.D., Hofheinz M., Ansmann M., Bialczak R.C., Lenander M., Lucero E., Neeley M., Sank D., Wang H., Weides M., et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697–703. doi: 10.1038/nature08967. PubMed DOI

Rugar D., Budakian R., Mamin H.J., Chui B.W. Single spin detection by magnetic resonance force microscopy. Nature. 2004;430:329–332. doi: 10.1038/nature02658. PubMed DOI

Stachiv I., Vokoun D., Jeng Y.-R. Measurement of Young’s modulus and volumetric mass density/thickness of ultrathin films utilizing resonant based mass sensors. Appl. Phys. Lett. 2014;104 doi: 10.1063/1.4866417. DOI

Jensen K., Kim K., Zettl A. An atomic-resolution mass sensor. Nat. Nanotechnol. 2008;3:533–537. doi: 10.1038/nnano.2008.200. PubMed DOI

Boisen A., Dohn S., Keller S.S., Smid S., Tenje M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 2011;74 doi: 10.1088/0034-4885/74/3/036101. DOI

Hanay M.S., Kelber S., Naik A.K., Hentz S., Bullard E.C., Colinet E., Duraffourg L., Roukes M.L. Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 2012;7:602–608. doi: 10.1038/nnano.2012.119. PubMed DOI PMC

Dohn S., Svendsen W., Boisen A., Hansen O. Mass and position determination of attached particles on cantilever based mass sensors. Rev. Sci. Instrum. 2007;78 doi: 10.1063/1.2804074. PubMed DOI

Dohn S., Schmid S., Amiot F., Boisen A. Position and mass determination of multiple particles using cantilever based mass sensors. Appl. Phys. Lett. 2010;97 doi: 10.1063/1.3473761. DOI

Stachiv I., Fedorchenko A.I., Chen Y.-L. Mass detection by means of the vibrating nanomechanical resonators. Appl. Phys. Lett. 2012;100 doi: 10.1063/1.3691195. DOI

Timoshenko S., Young D.H., Weaver W. Vibration Problems in Engineering. 4th ed. Wiley; New York, NY, USA: 1974.

Raman A., Melcher J., Tung R. Cantilever dynamics in atomic force microscopy. Nano Today. 2008;3:20–27. doi: 10.1016/S1748-0132(08)70012-4. DOI

Verbridge S.S., Bellan L.M., Parpia J.M., Craighead H.G. Optically driven resonance of nanoscale flexural oscillators in liquid. Nano Lett. 2006;6:2109–2114. doi: 10.1021/nl061397t. PubMed DOI

Sawano S., Arie T., Akita S. Carbon nanotube resonator in liquid. Nano Lett. 2010;10:3395–3398. doi: 10.1021/nl101292b. PubMed DOI

Braun T., Barwich V., Ghatkesar K., Bredekamp A.H., Gerber C., Hegner M., Lang H.P. Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys. Rev. E. 2005;72 doi: 10.1103/PhysRevE.72.031907. PubMed DOI

Stachiv I. On the nanoparticle or macromolecule mass detection in fluid utilizing vibrating micro-/nanoresonators including carbon nanotubes. Sens. Lett. 2013;11:613–616. doi: 10.1166/sl.2013.2926. DOI

Stachiv I. Impact of surface and residual stresses and electro-/magnetostatic axial loading on the suspended nanomechanical based mass sensors: A theoretical study. J. Appl. Phys. 2014;115 doi: 10.1063/1.4880396. DOI

Wei X., Chen Q., Xu S., Peng L., Zuo J. Beam to string transition of vibrating carbon nanotubes under axial tension. Adv. Funct. Mater. 2009;19:1753–1758. doi: 10.1002/adfm.200900105. DOI

Yoon G., Park H.-J., Na S., Eom K. Mesoscopic model for mechanical characterization of biological protein materials. J. Comput. Chem. 2009;30:873–880. doi: 10.1002/jcc.21107. PubMed DOI

Kwon T.Y., Eom K., Park J.H., Yoon D.S., Kim T.S., Lee H.L. In situ real-time time monitoring of biomolecular interactions based on the resonating microcantilevers immersed in a viscous fluid. Appl. Phys. Lett. 2007;90 doi: 10.1063/1.2741053. DOI

Wasisto H.S., Merzsch S., Stranz A., Waag A., Uhde E., Salthammer T., Peiner E. Femtogram aerosol nanoparticle mass sensing utilising vertical silicon nanowire resonators. IET Micro. Nano Lett. 2013;8:554–558. doi: 10.1049/mnl.2013.0208. DOI

Wasisto H.S., Huang K., Merzsch S., Stranz A., Waag A., Peiner E. Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications. Microsyst. Technol. 2014;20:571–584. doi: 10.1007/s00542-013-1992-8. DOI

Chon J.W.M., Mulvaney P., Sader J.E. Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. J. Appl. Phys. 2000;87 doi: 10.1063/1.372455. DOI

Sader J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998;84:64–66. doi: 10.1063/1.368002. DOI

Paul M.R, Cross M.C. Stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid. Phys. Rev. Lett. 2004;92 doi: 10.1103/PhysRevLett.92.235501. PubMed DOI

Basak S., Raman A., Garimella S.V. Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J. Appl. Phys. 2006;99 doi: 10.1063/1.2202232. DOI

Brumley D.R., Willcox M., Sader J.E. Oscillation of cylinders of rectangular cross section immersed in fluid. Phys. Fluids. 2010;22 doi: 10.1063/1.3397926. DOI

Landau L.D., Lifshitz E.M. Fluid Mechanics. Pergamon Press; Oxford, UK: 1987.

Rosenhead L. Laminar Boundary Layers. Claredon Press; Oxford, UK: 1963.

Stachiv I., Zapomel J., Chen Y.-L. Simultaneous determination of the elastic modulus and density/thickness of ultrathin films utilizing micro-/nanoresonators under applied axial force. J. Appl. Phys. 2014;115 doi: 10.1063/1.4869415. DOI

Fedorchenko A.I., Stachiv I., Wang A.B, Wang W.-C. Fundamental frequencies of mechanical systems with N-piecewise constant properties. J. Sound Vib. 2008;317:490–495. doi: 10.1016/j.jsv.2008.06.029. DOI

Mohanty P., Harrington D.A., Roukes M.L. Measurement of small forces in micron-sized resonators. Phys. B. 2000;284:2143–2144. doi: 10.1016/S0921-4526(99)02997-X. DOI

Mamin H.J., Rugar D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 2001;79 doi: 10.1063/1.1418256. DOI

Bargatin E., Myers B., Arlett J., Gudlewski B., Roukes M.L. Sensitive detection of nanomechanical motion using piezoresistive signal downmixing. Appl. Phys. Lett. 2005;86 doi: 10.1063/1.1896103. DOI

Chiu H.-W., Hung P., Postma H.W.C., Bockrath M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 2008;8:4342–4346. doi: 10.1021/nl802181c. PubMed DOI

Purcell S.T., Vincent P., Journet C., Bihn V.T. Tuning of nanotube mechanical resonances by electric field pulling. Phys. Rev. Lett. 2002;89 doi: 10.1103/PhysRevLett.89.276103. PubMed DOI

Kafumbe S.M.M., Burdess J.S., Harris A.J. Frequency adjustment of microelectromechanical cantilevers using electrostatic pull down. J. Micromech. Microeng. 2005;15:1033–1036. doi: 10.1088/0960-1317/15/5/020. DOI

Salahun E., Queffelec P., Tanne G., Adenot A.-L., Acher O. Correlation between magnetic properties of layered ferromagnetic/dielectric material and tunable microwave device applications. J. Appl. Phys. 2002;91:544–549. doi: 10.1063/1.1461066. DOI

Elmer F.J., Dreier M. The eigen frequencies of a rectangular AFM cantilever in a medium. J. Appl. Phys. 1997;81 doi: 10.1063/1.365379. DOI

Lebedev N.N., Skalskaya I.P., Ufland Y.S. Worked Problems in Applied Mathematics. Dover Publications; New York, NY, USA: 1979.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...