Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome

. 2018 Aug 17 ; 19 (1) : 112. [epub] 20180817

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid30115128

Grantová podpora
UMU00037 Grains Research and Development Corporation - International
ACSRF00542 Department of Industry, Innovation, Science, Research and Tertiary Education, Australian Government - International
NA Commonwealth Scientific and Industrial Research Organisation - International
NA BioPlatform Australia (BPA) - International
NA Victorian Department of Economic Development, Jobs, Transport and Resources - International
1338897 National Science Foundation - International
Project PT13/0001/0021 (ISCIII -FEDER) INB ("Instituto National de Bioinformatica") - International
LO1204 Czech Ministry of Education Youth and Sports - International

Odkazy

PubMed 30115128
PubMed Central PMC6097218
DOI 10.1186/s13059-018-1475-4
PII: 10.1186/s13059-018-1475-4
Knihovny.cz E-zdroje

BACKGROUND: Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome. RESULTS: Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region. CONCLUSIONS: Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.

Agriculture Victoria Research Department of Economic Development Jobs Transport and Resources AgriBio Bundoora VIC 3083 Australia

Australian Genome Research Facility Suite 219 55 Flemington Road North Melbourne VIC 3051 Australia

Bioinformatics and Genomics Program Centre for Genomic Regulation 88 Dr Aiguader 08003 Barcelona Spain

Center for Organismal Studies University of Heidelberg Im Neuenheimer Feld 345 69120 Heidelberg Germany

CSIRO Plant Industry Black Mountain Canberra ACT 2601 Australia

Global Institute of Food Security University of Saskatchewan 110 Gymnasium Place Saskatoon SK Canada

GYDLE 1135 Grande Allée Ouest Suite 220 Québec QC G1S 1E7 Canada

Henan Agricultural University Zhengzhou China

Henan Institute of Science and Technology Zhengzhou China

INRA UMR1095 Genetics Diversity and Ecophysiology of Cereals 5 chemin de Beaulieu 63039 Clermont Ferrand France

Institute of Evolution University of Haifa Haifa Israel

Institute of Experimental Botany Centre of the Region Haná for Biotechnological and Agricultural Research Slechtitelu 31 CZ 78371 Olomouc Czech Republic

International Wheat Genome Sequencing Consortium 2841 NE Marywood Ct Lee's Summit MO 64086 USA

King Abdullah University of Science and Technology Desert Agriculture Initiative Thuwal Saudi Arabia

Level Five Co Ltd GYB Akihabara Kanda Sudacho 2 25 Chiyoda ku Tokyo 101 0041 Japan

National Research Council of Canada University of Saskatchewan 110 Gymnasium Place Saskatoon SK Canada

Plant Genome and Systems Biology Helmholtz Center Munich 85764 Neuherberg Germany

School of Agriculture Food and Wine University of Adelaide Urrbrae South Australia 5064 Australia

UC Davis Plant Sciences Plant Genetics and Bioinformatics 258A Hunt Hall Davis CA 95616 USA

Veterinary and Agriculture Murdoch University 90 South St Murdoch Western Australia 6150 Australia

Wheat Genetics Resource Center and Department of Plant Pathology Kansas State University Manhattan KS 66506 USA

Zobrazit více v PubMed

The International Wheat Genome Sequencing Conosrtium. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science. 2018. 10.1126/science.aar7191. PubMed

The International Wheat Genome Sequencing Consortium A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI

Clavijo BP, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu F-H, McKenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L, Duncan O, Trösch J, Yu G, Bolser DM, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Haberer G, Davey RP, Fosker C, Di Palma FD, Phillips AL, Millar AH, Kersey PJ, Uauy C, Krasileva KW, Swarbreck D, Bevan MW, Clark MD. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27:885–896. doi: 10.1101/gr.217117.116. PubMed DOI PMC

Zimin AV, Puiu D, Hall R, Kingan S, Salzberg SL (2017), The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience;6:1–7. PubMed PMC

Eversole K, Rogers J, Keller B, Appels R, Feuillet C. Achieving sustainable cultivation of wheat, Part 1, Chap. 2. Cambridge: Burleigh-Dodds Science Publishing; 2017. Sequencing and assembly of the wheat genome.

Cole CG, McCann OT, Collins JE, Oliver K, Willey D, Gribble SM, Yang F, McLaren K, Rogers J, Ning Z, Beare DM, Dunham I. Finishing the finished human chromosome 22 sequence. Genome Biol. 2008;9:R78. 10.1186/gb-2008-9-5-r78. PubMed PMC

Fonville NC, Velmurugan KR, Tae H, Vaksman Z, LJ MI, Garner HR. Genomic leftovers: identifying novel microsatellites, overrepresented motifs and functional elements in the human genome. Sci Rep. 2016;6:27722. doi: 10.1038/srep27722. PubMed DOI PMC

Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316:1862–1866. doi: 10.1126/science.1143986. PubMed DOI PMC

Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security. 2013;5:291–317. doi: 10.1007/s12571-013-0263-y. DOI

Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics. 2012;12:573–583. doi: 10.1007/s10142-012-0300-5. PubMed DOI PMC

Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW. A genetic framework for kernel size and shape variation in wheat. Plant Cell. 2010;22:1046–1056. doi: 10.1105/tpc.110.074153. PubMed DOI PMC

Boeven PHG, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Würschum T. Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet. 2016;129:2343–2357. doi: 10.1007/s00122-016-2771-6. PubMed DOI

Wittkop B, Nagorny S, Snowdon R, Friedt W. Breeding progress in wheat: dissecting the components of grain yield. Proc 13th Int Wheat Genetics Symp April 23–28, Tulln, Austria: editors: Buerstmayr H, Lang-Mladek C, Steiner B, Michel S, Maria Buerstmayr M, Lemmens M, Vollmann J, Grausgruber H.

Ma Z, Zhao D, Zhang C, Zhang Z, Xue X, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol. Genet. Genomics. 2017;277:31–42. doi: 10.1007/s00438-006-0166-0. PubMed DOI

Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breeding. 2016;36:15. doi: 10.1007/s11032-016-0436-4. DOI

Huynh B-L, Mather DE, Schreiber AW, Toubia J, Baumann U, Shoaei Z, Stein N, Ariyadasa R, Stangoulis JCR, Edwards J, Shirley N, Langridge P, Fleury D. Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Mol Biol. 2012;80:299–314. doi: 10.1007/s11103-012-9949-3. PubMed DOI

Staňková H, Hastie AR, Chan S, Vrána J, Tulpová Z, Kubaláková M, Visendi P, Hayashi S, Luo M, Batley J, Edwards D, Doležel J, Šimková H. Bionano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol J. 2016;14:1523–1531. doi: 10.1111/pbi.12513. PubMed DOI PMC

Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol. 2015;16:29. doi: 10.1186/s13059-015-0601-9. PubMed DOI PMC

Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J. High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82:378–389. doi: 10.1016/S0888-7543(03)00128-9. PubMed DOI

Frenkel Z, Paux E, Mester D, Feuillet C, Korol A. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinformatics. 2010;11:584. doi: 10.1186/1471-2105-11-584. PubMed DOI PMC

Simpson JT, Wong K, Jackman SD, Schein JE, SJM J, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–1123. doi: 10.1101/gr.089532.108. PubMed DOI PMC

Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40:e72. doi: 10.1093/nar/gks001. PubMed DOI PMC

Quarrie SA, Pekic-Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot. 2006;57:2627–2637. doi: 10.1093/jxb/erl026. PubMed DOI

Wang G, Zhang X, Jin WJ. An overview of plant centromeres. Genet Genomics. 2009;36:529–537. doi: 10.1016/S1673-8527(08)60144-7. PubMed DOI

Comai L, Shamoni M, Mohan M, Marimuthu PA. Plant centromeres. Current Opinion in Plant Biology. 2017;36:158–167. doi: 10.1016/j.pbi.2017.03.003. PubMed DOI

Yan H, Talbert PB, Lee HR, Jett J, Henikoff S, Chen F, Jiang J. Intergenic locations of rice centromeric chromatin. PLoS Biol. 2008;6:e286. doi: 10.1371/journal.pbio.0060286. PubMed DOI PMC

Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X, Hu Z, Han F. De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet. 2016;12:e1005997. doi: 10.1371/journal.pgen.1005997. PubMed DOI PMC

Koo DH, Sehgal SK, Friebe B, Gill BS. Structure and stability of telocentric chromosomes in wheat. PLoS One. 2015;10:e0137747. doi: 10.1371/journal.pone.0137747. PubMed DOI PMC

Chapman JA, Mascher M, Buluç A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L, Schmutz J, Yelick KA, Scholz U, Waugh R, Poland JA, Muehlbauer GJ, Stein N, Rokhsar DS. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 2015;16:26. doi: 10.1186/s13059-015-0582-8. PubMed DOI PMC

Pollock CJ, Cairns AJ. Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol. 1991;42:77–101. doi: 10.1146/annurev.pp.42.060191.000453. DOI

Dawe RK. Meiotic chromosome organization and segregation in plants. Annu Rev Physiol Plant Mol Biol. 1998;49:371–395. doi: 10.1146/annurev.arplant.49.1.371. PubMed DOI

Kishii M, Nagaki K, Tsujimoto H. A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosom Res. 2001;9:417–428. doi: 10.1023/A:1016739719421. PubMed DOI

Malik HS, Henikoff S. Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev. 2002;12:711–718. doi: 10.1016/S0959-437X(02)00351-9. PubMed DOI

Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J. The genome of Eucalyptus grandis. Nature. 2014;510:356–362. doi: 10.1038/nature13308. PubMed DOI

Barrero JM, Cavanagh C, Verbyla KL, Tibbits JF, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang P, Whan A, Rigault P, Hayden MJ, Gubler F. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL.Genome Biol. 2015;16:93. PubMed PMC

Cao H, Hastie AR, Cao D, Lam ET, Sun Y, Huang H, et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaScience. 2014;3. 10.1186/2047-217X-3-34. PubMed PMC

Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5. PubMed ID: 15297300. PubMed

Wheat chromosome 7A mate-pair data from flow-sorted chromosomes. 2018. https://www.ebi.ac.uk/ena/data/view/PRJEB26335.

IWGSC . Wheat chromosome 7A BACs sequenced in pools based on the physical map minimum tiling path (MTP) with Illumina HiSeq 2500. 2018.

Sequencing of a Chinese spring wheat with 7EL addition from Thinopyrum elongatum. 2018. https://www.ebi.ac.uk/ena/data/view/PRJNA450404.

Stage 3 Gydle assembly of chromosome 7A and Bionano assemblies. 2018. https://urgi.versailles.inra.fr/download/iwgsc/7A.

Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J. 2012;10:826–839. doi: 10.1111/j.1467-7652.2012.00702.x. PubMed DOI

Shah R, Cavanagh CR, Huang BE. Computationally efficient map construction in the presence of segregation distortion. Theor Appl Genet. 2014;127:2585–2597. doi: 10.1007/s00122-014-2401-0. PubMed DOI

Sehgal D, Autrique E, Singh R, Ellis M, Singh S, Dreisigacker S. Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci Rep. 2017;7:41578. doi: 10.1038/srep41578. PubMed DOI PMC

Taylor J, Butler D. R Package ASMap: efficient genetic linkage map, construction and diagnosis. J Stat Softw 2017. 10.18637/jss.v079.i06.

Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet. 2012;125:1473–1485. doi: 10.1007/s00122-012-1927-2. PubMed DOI

Taylor J, Verbyla A. R Package wgaim: QTL analysis in bi-parental populations using linear mixed models. J Stat Softw. 2011;40:1–18. doi: 10.18637/jss.v040.i07. DOI

Ma M, Wang Q, Li Z, Cheng H, Li Z, Liu X, Song W, Appels R, Zhao H. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J. 2015;83:312–325. doi: 10.1111/tpj.12896. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...