Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
UMU00037
Grains Research and Development Corporation - International
ACSRF00542
Department of Industry, Innovation, Science, Research and Tertiary Education, Australian Government - International
NA
Commonwealth Scientific and Industrial Research Organisation - International
NA
BioPlatform Australia (BPA) - International
NA
Victorian Department of Economic Development, Jobs, Transport and Resources - International
1338897
National Science Foundation - International
Project PT13/0001/0021 (ISCIII -FEDER)
INB ("Instituto National de Bioinformatica") - International
LO1204
Czech Ministry of Education Youth and Sports - International
PubMed
30115128
PubMed Central
PMC6097218
DOI
10.1186/s13059-018-1475-4
PII: 10.1186/s13059-018-1475-4
Knihovny.cz E-zdroje
- Klíčová slova
- Megabase-scale integration, Optical/physical maps Grain quality, Wheat sequence finishing, Yield,
- MeSH
- centromera metabolismus MeSH
- chromozomy rostlin genetika MeSH
- fruktany analýza MeSH
- fyzikální mapování chromozomů metody MeSH
- genom rostlinný * MeSH
- optické jevy * MeSH
- pšenice genetika MeSH
- semena rostlinná genetika MeSH
- umělé bakteriální chromozomy genetika MeSH
- zemědělství * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fruktany MeSH
BACKGROUND: Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome. RESULTS: Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region. CONCLUSIONS: Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.
Australian Genome Research Facility Suite 219 55 Flemington Road North Melbourne VIC 3051 Australia
CSIRO Plant Industry Black Mountain Canberra ACT 2601 Australia
Global Institute of Food Security University of Saskatchewan 110 Gymnasium Place Saskatoon SK Canada
GYDLE 1135 Grande Allée Ouest Suite 220 Québec QC G1S 1E7 Canada
Henan Agricultural University Zhengzhou China
Henan Institute of Science and Technology Zhengzhou China
Institute of Evolution University of Haifa Haifa Israel
International Wheat Genome Sequencing Consortium 2841 NE Marywood Ct Lee's Summit MO 64086 USA
King Abdullah University of Science and Technology Desert Agriculture Initiative Thuwal Saudi Arabia
Level Five Co Ltd GYB Akihabara Kanda Sudacho 2 25 Chiyoda ku Tokyo 101 0041 Japan
Plant Genome and Systems Biology Helmholtz Center Munich 85764 Neuherberg Germany
School of Agriculture Food and Wine University of Adelaide Urrbrae South Australia 5064 Australia
UC Davis Plant Sciences Plant Genetics and Bioinformatics 258A Hunt Hall Davis CA 95616 USA
Veterinary and Agriculture Murdoch University 90 South St Murdoch Western Australia 6150 Australia
Zobrazit více v PubMed
The International Wheat Genome Sequencing Conosrtium. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science. 2018. 10.1126/science.aar7191. PubMed
The International Wheat Genome Sequencing Consortium A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI
Clavijo BP, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu F-H, McKenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L, Duncan O, Trösch J, Yu G, Bolser DM, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Haberer G, Davey RP, Fosker C, Di Palma FD, Phillips AL, Millar AH, Kersey PJ, Uauy C, Krasileva KW, Swarbreck D, Bevan MW, Clark MD. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27:885–896. doi: 10.1101/gr.217117.116. PubMed DOI PMC
Zimin AV, Puiu D, Hall R, Kingan S, Salzberg SL (2017), The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience;6:1–7. PubMed PMC
Eversole K, Rogers J, Keller B, Appels R, Feuillet C. Achieving sustainable cultivation of wheat, Part 1, Chap. 2. Cambridge: Burleigh-Dodds Science Publishing; 2017. Sequencing and assembly of the wheat genome.
Cole CG, McCann OT, Collins JE, Oliver K, Willey D, Gribble SM, Yang F, McLaren K, Rogers J, Ning Z, Beare DM, Dunham I. Finishing the finished human chromosome 22 sequence. Genome Biol. 2008;9:R78. 10.1186/gb-2008-9-5-r78. PubMed PMC
Fonville NC, Velmurugan KR, Tae H, Vaksman Z, LJ MI, Garner HR. Genomic leftovers: identifying novel microsatellites, overrepresented motifs and functional elements in the human genome. Sci Rep. 2016;6:27722. doi: 10.1038/srep27722. PubMed DOI PMC
Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316:1862–1866. doi: 10.1126/science.1143986. PubMed DOI PMC
Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security. 2013;5:291–317. doi: 10.1007/s12571-013-0263-y. DOI
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics. 2012;12:573–583. doi: 10.1007/s10142-012-0300-5. PubMed DOI PMC
Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW. A genetic framework for kernel size and shape variation in wheat. Plant Cell. 2010;22:1046–1056. doi: 10.1105/tpc.110.074153. PubMed DOI PMC
Boeven PHG, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Würschum T. Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet. 2016;129:2343–2357. doi: 10.1007/s00122-016-2771-6. PubMed DOI
Wittkop B, Nagorny S, Snowdon R, Friedt W. Breeding progress in wheat: dissecting the components of grain yield. Proc 13th Int Wheat Genetics Symp April 23–28, Tulln, Austria: editors: Buerstmayr H, Lang-Mladek C, Steiner B, Michel S, Maria Buerstmayr M, Lemmens M, Vollmann J, Grausgruber H.
Ma Z, Zhao D, Zhang C, Zhang Z, Xue X, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol. Genet. Genomics. 2017;277:31–42. doi: 10.1007/s00438-006-0166-0. PubMed DOI
Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breeding. 2016;36:15. doi: 10.1007/s11032-016-0436-4. DOI
Huynh B-L, Mather DE, Schreiber AW, Toubia J, Baumann U, Shoaei Z, Stein N, Ariyadasa R, Stangoulis JCR, Edwards J, Shirley N, Langridge P, Fleury D. Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Mol Biol. 2012;80:299–314. doi: 10.1007/s11103-012-9949-3. PubMed DOI
Staňková H, Hastie AR, Chan S, Vrána J, Tulpová Z, Kubaláková M, Visendi P, Hayashi S, Luo M, Batley J, Edwards D, Doležel J, Šimková H. Bionano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol J. 2016;14:1523–1531. doi: 10.1111/pbi.12513. PubMed DOI PMC
Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol. 2015;16:29. doi: 10.1186/s13059-015-0601-9. PubMed DOI PMC
Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J. High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82:378–389. doi: 10.1016/S0888-7543(03)00128-9. PubMed DOI
Frenkel Z, Paux E, Mester D, Feuillet C, Korol A. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinformatics. 2010;11:584. doi: 10.1186/1471-2105-11-584. PubMed DOI PMC
Simpson JT, Wong K, Jackman SD, Schein JE, SJM J, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–1123. doi: 10.1101/gr.089532.108. PubMed DOI PMC
Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40:e72. doi: 10.1093/nar/gks001. PubMed DOI PMC
Quarrie SA, Pekic-Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot. 2006;57:2627–2637. doi: 10.1093/jxb/erl026. PubMed DOI
Wang G, Zhang X, Jin WJ. An overview of plant centromeres. Genet Genomics. 2009;36:529–537. doi: 10.1016/S1673-8527(08)60144-7. PubMed DOI
Comai L, Shamoni M, Mohan M, Marimuthu PA. Plant centromeres. Current Opinion in Plant Biology. 2017;36:158–167. doi: 10.1016/j.pbi.2017.03.003. PubMed DOI
Yan H, Talbert PB, Lee HR, Jett J, Henikoff S, Chen F, Jiang J. Intergenic locations of rice centromeric chromatin. PLoS Biol. 2008;6:e286. doi: 10.1371/journal.pbio.0060286. PubMed DOI PMC
Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X, Hu Z, Han F. De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet. 2016;12:e1005997. doi: 10.1371/journal.pgen.1005997. PubMed DOI PMC
Koo DH, Sehgal SK, Friebe B, Gill BS. Structure and stability of telocentric chromosomes in wheat. PLoS One. 2015;10:e0137747. doi: 10.1371/journal.pone.0137747. PubMed DOI PMC
Chapman JA, Mascher M, Buluç A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L, Schmutz J, Yelick KA, Scholz U, Waugh R, Poland JA, Muehlbauer GJ, Stein N, Rokhsar DS. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 2015;16:26. doi: 10.1186/s13059-015-0582-8. PubMed DOI PMC
Pollock CJ, Cairns AJ. Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol. 1991;42:77–101. doi: 10.1146/annurev.pp.42.060191.000453. DOI
Dawe RK. Meiotic chromosome organization and segregation in plants. Annu Rev Physiol Plant Mol Biol. 1998;49:371–395. doi: 10.1146/annurev.arplant.49.1.371. PubMed DOI
Kishii M, Nagaki K, Tsujimoto H. A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosom Res. 2001;9:417–428. doi: 10.1023/A:1016739719421. PubMed DOI
Malik HS, Henikoff S. Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev. 2002;12:711–718. doi: 10.1016/S0959-437X(02)00351-9. PubMed DOI
Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J. The genome of Eucalyptus grandis. Nature. 2014;510:356–362. doi: 10.1038/nature13308. PubMed DOI
Barrero JM, Cavanagh C, Verbyla KL, Tibbits JF, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang P, Whan A, Rigault P, Hayden MJ, Gubler F. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL.Genome Biol. 2015;16:93. PubMed PMC
Cao H, Hastie AR, Cao D, Lam ET, Sun Y, Huang H, et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaScience. 2014;3. 10.1186/2047-217X-3-34. PubMed PMC
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5. PubMed ID: 15297300. PubMed
Wheat chromosome 7A mate-pair data from flow-sorted chromosomes. 2018. https://www.ebi.ac.uk/ena/data/view/PRJEB26335.
IWGSC . Wheat chromosome 7A BACs sequenced in pools based on the physical map minimum tiling path (MTP) with Illumina HiSeq 2500. 2018.
Sequencing of a Chinese spring wheat with 7EL addition from Thinopyrum elongatum. 2018. https://www.ebi.ac.uk/ena/data/view/PRJNA450404.
Stage 3 Gydle assembly of chromosome 7A and Bionano assemblies. 2018. https://urgi.versailles.inra.fr/download/iwgsc/7A.
Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J. 2012;10:826–839. doi: 10.1111/j.1467-7652.2012.00702.x. PubMed DOI
Shah R, Cavanagh CR, Huang BE. Computationally efficient map construction in the presence of segregation distortion. Theor Appl Genet. 2014;127:2585–2597. doi: 10.1007/s00122-014-2401-0. PubMed DOI
Sehgal D, Autrique E, Singh R, Ellis M, Singh S, Dreisigacker S. Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci Rep. 2017;7:41578. doi: 10.1038/srep41578. PubMed DOI PMC
Taylor J, Butler D. R Package ASMap: efficient genetic linkage map, construction and diagnosis. J Stat Softw 2017. 10.18637/jss.v079.i06.
Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet. 2012;125:1473–1485. doi: 10.1007/s00122-012-1927-2. PubMed DOI
Taylor J, Verbyla A. R Package wgaim: QTL analysis in bi-parental populations using linear mixed models. J Stat Softw. 2011;40:1–18. doi: 10.18637/jss.v040.i07. DOI
Ma M, Wang Q, Li Z, Cheng H, Li Z, Liu X, Song W, Appels R, Zhao H. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J. 2015;83:312–325. doi: 10.1111/tpj.12896. PubMed DOI
Flow Cytometric Analysis and Sorting of Plant Chromosomes
Flow Sorting-Assisted Optical Mapping