BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26801360
PubMed Central
PMC5066648
DOI
10.1111/pbi.12513
Knihovny.cz E-zdroje
- Klíčová slova
- chromosomes, flow sorting, optical mapping, physical map, sequencing, wheat,
- MeSH
- biotechnologie metody MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný * MeSH
- mapování chromozomů metody MeSH
- pšenice genetika MeSH
- sekvenční analýza DNA metody MeSH
- tandemové repetitivní sekvence MeSH
- umělé bakteriální chromozomy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.
Australian Centre for Plant Functional Genomics University of Queensland Brisbane QLD Australia
BioNano Genomics San Diego CA USA
Department of Plant Sciences University of California Davis CA USA
School of Agriculture and Food Sciences University of Queensland Brisbane QLD Australia
School of Plant Biology University of Western Australia Crawley WA Australia
Zobrazit více v PubMed
Alkan, C. , Sajjadian, S. and Eichler, E.E. (2011) Limitations of next‐generation genome sequence assembly. Nat. Methods, 8, 61–65. PubMed PMC
Anantharaman, T. and Mishra, B. (2001) A probabilistic analysis of false positives in optical map alignment and validation. Algorithms in Bioinformatics, First International Workshop, WABI 2001 Proceedings, LNCS 2149, 27–40, Springer‐Verlag.
Berkman, P.J. , Skarshewski, A. , Lorenc, M.T. , Lai, K. , Duran, C. , Ling, E.Y. , Stiller, J. et al. (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 9, 768–775. PubMed
Breen, J. , Wicker, T. , Shatalina, M. , Frenkel, Z. , Bertin, I. , Philippe, R. , Spielmeyer, W. et al. (2013) A physical map of the short arm of wheat chromosome 1A. PLoS ONE, 8, e80272. PubMed PMC
Brenchley, R. , Spannagl, M. , Pfeifer, M. , Barker, G.L. , D'Amore, R. , Allen, A.M. , McKenzie, N. et al. (2012) Analysis of the bread wheat genome using whole‐genome shotgun sequencing. Nature, 491, 705–710. PubMed PMC
Callaway, E. (2014) ‘Platinum’ genome shapes up. Nature, 515, 323–323. PubMed
Cao, H. , Hastie, A.R. , Cao, D. , Lam, E.T. , Sun, Y. , Huang, H. , Liu, X. et al. (2014) Rapid detection of structural variation in a human genome using nanochannel‐based genome mapping technology. GigaScience, 3, 34. PubMed PMC
Chaisson, M.J.P. , Huddleston, J. , Dennis, M.Y. , Sudmant, P.H. , Malig, M. , Hormozdiari, F. , Antonacci, F. et al. (2015) Resolving the complexity of the human genome using single‐molecule sequencing. Nature, 517, 608–611. PubMed PMC
Chapman, J.A. , Mascher, M. , Buluç, A. , Barry, K. , Georganas, E. , Session, A. , Strnadova, V. et al. (2015) A whole‐genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 16, 26. PubMed PMC
Choulet, F. , Alberti, A. , Theil, S. , Glover, N. , Barbe, V. , Daron, J. , Pingault, L. et al. (2014a) Structural and functional partitioning of bread wheat chromosome 3B. Science, 345, 1249721. PubMed
Choulet, F. , Caccamo, M. , Wright, J. , Alaux, M. , Šimková, H. , Šafář, J. , Leroy, P. et al. (2014b) The Wheat Black Jack: advances towards sequencing the 21 chromosomes of bread wheat. In Genomics of Plant Genetic Resources ( Tuberosa, R. , Graner, A. and Frison, E. , eds), pp. 405–438. Dordrecht: Springer Science + Business Media.
Doležel, J. , Vrána, J. , Cápal, P. , Kubaláková, M. , Burešová, V. and Šimková, H. (2014) Advances in plant chromosome genomics. Biotechnol. Adv. 32, 122–136. PubMed
Dong, Y. , Xie, M. , Jiang, Y. , Xiao, N. , Du, X. , Zhang, W. , Tosser‐Klopp, G. et al. (2013) Sequencing and automated whole‐genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31, 135–141. PubMed
ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74. PubMed PMC
Erayman, M. , Sandhu, D. , Sidhu, D. , Dilbirligi, M. , Baenziger, P.S. and Gill, K.S. (2004) Demarcating the gene‐rich regions of the wheat genome. Nucleic Acids Res. 32, 3546–3565. PubMed PMC
Feuillet, C. , Stein, N. , Rossini, L. , Praud, S. , Mayer, K. , Schulman, A. , Eversole, K. et al. (2012) Integrating cereal genomics to support innovation in the Triticeae. Funct. Integr. Genomics, 12, 573–583. PubMed PMC
Ganapathy, G. , Howard, J.T. , Ward, J.M. , Li, J. , Li, B. , Li, Y. , Xiong, Y. et al. (2014) High‐coverage sequencing and annotated assemblies of the budgerigar genome. GigaScience, 3, 11. PubMed PMC
Gill, B.S. , Friebe, B. and Endo, T.R. (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 34, 830–839.
Hastie, A.R. , Dong, L. , Smith, A. , Finklestein, J. , Lam, E.T. , Huo, N. , Cao, H. et al. (2013) Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLoS ONE, 8, e55864. PubMed PMC
International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome‐based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788. PubMed
Janda, J. , Šafář, J. , Kubaláková, M. , Bartoš, J. , Kovářová, P. , Suchánková, P. , Pateyron, S. et al. (2006) Novel resources for wheat genomics: BAC library specific for the short arm of chromosome 1B. Plant J. 47, 977–986. PubMed
Kazakoff, S.H. , Imelfort, M. , Edwards, D. , Koehorst, J. , Biswas, B. , Batley, J. , Scott, P.T. et al. (2012) Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feed‐stock tree Pongamia pinnata . PLoS ONE, 7, e51687. PubMed PMC
Kelley, D.R. and Salzberg, S.L. (2010) Detection and correction of false segmental duplications caused by genome mis‐assembly. Genome Biol. 11, R28. PubMed PMC
Kubaláková, M. , Vrána, J. , Číhalíková, J. , Šimková, H. and Doležel, J. (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104, 1362–1372. PubMed
Kumar, A. , Simons, K. , Iqbal, M.J. , Michalak de Jimenéz, M. , Bassi, F.M. , Ghavami, F. , Al‐Azzam, O. et al. (2012) Physical mapping resources for large plant genomes: radiation hybrids for wheat D‐genome progenitor Aegilops tauschii . BMC Genom. 13, 597. PubMed PMC
Lam, E.T. , Hastie, A. , Lin, C. , Ehrlich, D. , Das, S.K. , Austin, M.D. , Deshpande, P. et al. (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30, 771–776. PubMed PMC
Luo, M.C. , Gu, Y.Q. , You, F.M. , Deal, K.R. , Ma, Y. , Hu, Y. , Huo, N. et al. (2013) A 4‐gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii the wheat D‐genome progenitor. Proc. Natl. Acad. Sci. USA, 110, 7940–7945. PubMed PMC
Marx, V. (2013) Next‐generation sequencing: the genome jigsaw. Nature, 501, 263–268. PubMed
Mikheyev, A.S. and Tin, M.M. (2014) A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Resour. 14, 1097–1102. PubMed
Paux, E. , Sourdille, P. , Salse, J. , Saintenac, C. , Choulet, F. , Leroy, P. , Korol, A. et al. (2008) A physical map of the 1‐gigabase bread wheat chromosome 3B. Science, 322, 101–104. PubMed
Pendleton, M. , Sebra, R. , Pang, A.W. , Ummat, A. , Franzen, O. , Rausch, T. , Stütz, A.M. et al. (2015) Assembly and diploid architecture of an individual human genome via single‐molecule technologies. Nat. Methods, 12, 780–786. PubMed PMC
Philippe, R. , Paux, E. , Bertin, I. , Sourdille, P. , Choulet, F. , Laugier, C. , Šimková, H. et al. (2013) A high density physical map of chromosome 1BL supports evolutionary studies, map‐based cloning and sequencing in wheat. Genome Biol. 14, R64. PubMed PMC
Poursarebani, N. , Nussbaumer, T. , Šimková, H. , Šafář, J. , Witsenboer, H. , van Oeveren, J. , Doležel, J. et al. (2014) Whole‐genome profiling and shotgun sequencing delivers an anchored, gene‐decorated, physical map assembly of bread wheat chromosome 6A. Plant J. 79, 334–347. PubMed PMC
Ruperao, P. , Chan, C.K. , Azam, S. , Karafiátová, M. , Hayashi, S. , Čížková, J. , Saxena, R.K. et al. (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol. J. 12, 778–786. PubMed
Šafář, J. , Noa‐Carrazana, J.C. , Vrána, J. , Bartoš, J. , Alkhimova, O. , Lheureux, F. , Šimková, H. et al. (2004) Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome, 47, 1182–1191. PubMed
Šafář, J. , Šimková, H. , Kubaláková, M. , Číhalíková, J. , Suchánková, P. , Bartoš, J. and Doležel, J. (2010) Development of chromosome‐specific BAC resources for genomics of bread wheat. Cytogenet. Genome Res. 129, 211–223. PubMed
Shearer, L.A. , Anderson, L.K. , de Jong, H. , Smit, S. , Goicoechea, J.L. , Roe, B.A. , Hua, A. et al. (2014) Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 (Bethesda), 4, 1395–1405. PubMed PMC
Šimková, H. , Číhalíková, J. , Vrána, J. , Lysák, M.A. and Doležel, J. (2003) Preparation of high molecular weight DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plantarum, 46, 369–373.
Šimková, H. , Šafář, J. , Kubaláková, M. , Suchánková, P. , Číhalíková, J. , Robert‐Quatre, H. , Azhaguvel, P. et al. (2011) BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes. J. Biomed. Biotechnol. 2011, 302543. PubMed PMC
Soderlund, C. , Humphray, S. , Dunham, A. and French, L. (2000) Contigs built with fingerprints, markers, and FPC V4.7. Genome Res. 10, 1772–1787. PubMed PMC
Teague, B. , Waterman, M.S. , Goldstein, S. , Potamousis, K. , Zhou, S. , Reslewic, S. , Sarkar, D. et al. (2010) High‐resolution human genome structure by single‐molecule analysis. Proc. Natl. Acad. Sci. USA, 107, 10848–10853. PubMed PMC
Tiwari, V.K. , Riera‐Lizarazu, O. , Gunn, H.L. , Lopez, K. , Iqbal, M.J. , Kianian, S.F. and Leonard, J.M. (2012) Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D‐genome and a measure of γ ray‐induces chromosome breaks. PLoS ONE, 7, e48815. PubMed PMC
Vrána, J. , Kubaláková, M. , Číhalíková, J. , Valárik, M. and Doležel, J. (2015) Preparation of sub‐genomic fractions enriched for particular chromosomes in polyploid wheat. Biol. Plantarum, 59, 445–455.
Young, N.D. , Debellé, F. , Oldroyd, G.E. , Geurts, R. , Cannon, S.B. , Udvardi, M.K. , Benedito, V.A. et al. (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480, 520–524. PubMed PMC
Zarrei, M. , MacDonald, J.R. , Merico, D. and Scherer, S.W. (2015) A copy number variation map of the human genome. Nat. Rev. Genet. 16, 172–183. PubMed
Zhang, J. , Li, C. , Zhou, Q. and Zhang, G. (2015) Improving the ostrich genome assembly using optical mapping data. GigaScience, 4, 24. PubMed PMC
Zhou, S. and Schwartz, D.C. (2004) The optical mapping of microbial genomes. ASM News, 70, 323–330.
Zhou, S. , Bechner, M.C. , Place, M. , Churas, C.P. , Pape, L. , Leong, S.A. , Runnheim, R. et al. (2007) Validation of rice genome sequence by optical mapping. BMC Genom. 8, 278. PubMed PMC
Zhou, S. , Wei, F. , Nguyen, J. , Bechner, M. , Potamousis, K. , Goldstein, S. , Pape, L. et al. (2009) Single molecule scaffold for the maize genome. PLoS Genet. 5, e1000711. PubMed PMC
Flow Cytometric Analysis and Sorting of Plant Chromosomes
Flow Sorting-Assisted Optical Mapping
The Dark Matter of Large Cereal Genomes: Long Tandem Repeats
A chromosome conformation capture ordered sequence of the barley genome