Global Transcriptomic Analysis of Bacteriophage-Host Interactions between a Kayvirus Therapeutic Phage and Staphylococcus aureus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35435752
PubMed Central
PMC9241854
DOI
10.1128/spectrum.00123-22
Knihovny.cz E-zdroje
- Klíčová slova
- Kayvirus, RNA-Seq, Staphylococcus aureus, Staphylococcus phages, bacteriophage therapy, noncoding RNA, phage-host interactions, prophages, transcriptome, viral transcription,
- MeSH
- lidé MeSH
- profágy genetika MeSH
- stafylokokové bakteriofágy genetika MeSH
- stafylokokové infekce * mikrobiologie terapie MeSH
- Staphylococcus aureus * MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Kayviruses are polyvalent broad host range staphylococcal phages with a potential to combat staphylococcal infections. However, the implementation of rational phage therapy in medicine requires a thorough understanding of the interactions between bacteriophages and pathogens at omics level. To evaluate the effect of a phage used in therapy on its host bacterium, we performed differential transcriptomic analysis by RNA-Seq from bacteriophage K of genus Kayvirus infecting two Staphylococcus aureus strains, prophage-less strain SH1000 and quadruple lysogenic strain Newman. The temporal transcriptional profile of phage K was comparable in both strains except for a few loci encoding hypothetical proteins. Stranded sequencing revealed transcription of phage noncoding RNAs that may play a role in the regulation of phage and host gene expression. The transcriptional response of S. aureus to phage K infection resembles a general stress response with differential expression of genes involved in a DNA damage response. The host transcriptional changes involved upregulation of nucleotide, amino acid and energy synthesis and transporter genes and downregulation of host transcription factors. The interaction of phage K with variable genetic elements of the host showed slight upregulation of gene expression of prophage integrases and antirepressors. The virulence genes involved in adhesion and immune evasion were only marginally affected, making phage K suitable for therapy. IMPORTANCE Bacterium Staphylococcus aureus is a common human and veterinary pathogen that causes mild to life-threatening infections. As strains of S. aureus are becoming increasingly resistant to multiple antibiotics, the need to search for new therapeutics is urgent. A promising alternative to antibiotic treatment of staphylococcal infections is a phage therapy using lytic phages from the genus Kayvirus. Here, we present a comprehensive view on the phage-bacterium interactions on transcriptomic level that improves the knowledge of molecular mechanisms underlying the Kayvirus lytic action. The results will ensure safer usage of the phage therapeutics and may also serve as a basis for the development of new antibacterial strategies.
Zobrazit více v PubMed
Pirnay JP, Ferry T, Resch G. 2022. Recent progress towards the implementation of phage therapy in Western medicine. FEMS Microbiol Rev 46:fuab040. doi:10.1093/femsre/fuab040. PubMed DOI
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. 2019. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539. doi:10.3389/fmicb.2019.00539. PubMed DOI PMC
Leskinen K, Tuomala H, Wicklund A, Horsma-Heikkinen J, Kuusela P, Skurnik M, Kiljunen S. 2017. Characterization of vB_SauM-fRuSau02, a Twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses 9:258. doi:10.3390/v9090258. PubMed DOI PMC
Kaźmierczak Z, Majewska J, Miernikiewicz P, Międzybrodzki R, Nowak S, Harhala M, Lecion D, Kęska W, Owczarek B, Ciekot J, Drab M, Kędzierski P, Mazurkiewicz-Kania M, Górski A, Dąbrowska K. 2021. Immune response to therapeutic staphylococcal bacteriophages in mammals: kinetics of induction, immunogenic structural proteins, natural and induced antibodies. Front Immunol 12:639570. doi:10.3389/fimmu.2021.639570. PubMed DOI PMC
O'Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. 2005. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 71:1836–1842. doi:10.1128/AEM.71.4.1836-1842.2005. PubMed DOI PMC
Onsea J, Post V, Buchholz T, Schwegler H, Zeiter S, Wagemans J, Pirnay J-P, Merabishvili M, D’Este M, Rotman SG, Trampuz A, Verhofstad MHJ, Obremskey WT, Lavigne R, Richards RG, Moriarty TF, Metsemakers W-J. 2021. Bacteriophage therapy for the prevention and treatment of fracture-related infection caused by Staphylococcus aureus: a preclinical study. Microbiol Spectr 9:e01736-21. doi:10.1128/spectrum.01736-21. PubMed DOI PMC
Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR, Westmead Bacteriophage Therapy Team. 2020. Westmead bacteriophage therapy T Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol 5:465–472. doi:10.1038/s41564-019-0634-z. PubMed DOI
Botka T, Pantůček R, Mašlaňová I, Benešík M, Petráš P, Růžičková V, Havlíčková P, Varga M, Žemličková H, Koláčková I, Florianová M, Jakubů V, Karpíšková R, Doškař J. 2019. Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci. Sci Rep 9:5475. doi:10.1038/s41598-019-41868-w. PubMed DOI PMC
Benešík M, Nováček J, Janda L, Dopitová R, Pernisová M, Melková K, Tišáková L, Doškař J, Žídek L, Hejátko J, Pantůček R. 2018. Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity. Virus Genes 54:130–139. doi:10.1007/s11262-017-1507-2. PubMed DOI
Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, Amri N, Khatchatourova E, Coutinho FH, Loessner MJ, Goméz-Sanz E. 2021. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 12:6965. doi:10.1038/s41467-021-27037-6. PubMed DOI PMC
Götz F, Popp F, Schleifer KH. 1984. Isolation and characterization of a virulent bacteriophage from Staphylococcus carnosus. FEMS Microbiol Lett 23:303–307. doi:10.1111/j.1574-6968.1984.tb01083.x. DOI
Sergueev KV, Filippov AA, Farlow J, Su W, Kvachadze L, Balarjishvili N, Kutateladze M, Nikolich MP. 2019. Correlation of host range expansion of therapeutic bacteriophage Sb-1 with allele state at a hypervariable repeat locus. Appl Environ Microbiol 85:e01209-19. doi:10.1128/AEM.01209-19. PubMed DOI PMC
Sáez Moreno D, Visram Z, Mutti M, Restrepo-Córdoba M, Hartmann S, Kremers AI, Tisakova L, Schertler S, Wittmann J, Kalali B, Monecke S, Ehricht R, Resch G, Corsini L. 2021. ε2-phages are naturally bred and have a vastly improved host range in Staphylococcus aureus over wild type phages. Pharmaceuticals (Basel) 14:325. doi:10.3390/ph14040325. PubMed DOI PMC
Lehman SM, Mearns G, Rankin D, Cole RA, Smrekar F, Branston SD, Morales S. 2019. Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses 11:88. doi:10.3390/v11010088. PubMed DOI PMC
Chen J, Ram G, Penadés JR, Brown S, Novick RP. 2015. Pathogenicity island-directed transfer of unlinked chromosomal virulence genes. Mol Cell 57:138–149. doi:10.1016/j.molcel.2014.11.011. PubMed DOI PMC
O'Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP. 2004. Genome of staphylococcal phage K: a new lineage of Myoviridae infecting Gram-positive bacteria with a low G+C content. J Bacteriol 186:2862–2871. doi:10.1128/JB.186.9.2862-2871.2004. PubMed DOI PMC
Nováček J, Šiborová M, Benešík M, Pantůček R, Doškař J, Plevka P. 2016. Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. Proc Natl Acad Sci USA 113:9351–9356. doi:10.1073/pnas.1605883113. PubMed DOI PMC
Gill JJ. 2014. Revised genome sequence of Staphylococcus aureus bacteriophage K. Genome Announc 2:e01173-13. doi:10.1128/genomeA.01173-13. PubMed DOI PMC
Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dąbrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A. 2012. Genomics of staphylococcal Twort-like phages - potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216. doi:10.1016/B978-0-12-394438-2.00005-0. PubMed DOI
Kornienko M, Fisunov G, Bespiatykh D, Kuptsov N, Gorodnichev R, Klimina K, Kulikov E, Ilina E, Letarov A, Shitikov E. 2020. Transcriptional landscape of Staphylococcus aureus Kayvirus bacteriophage vB_SauM-515A1. Viruses 12:1320. doi:10.3390/v12111320. PubMed DOI PMC
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8. PubMed DOI PMC
Belley A, Callejo M, Arhin F, Dehbi M, Fadhil I, Liu J, McKay G, Srikumar R, Bauda P, Bergeron D, Ha N, Dubow M, Gros P, Pelletier J, Moeck G. 2006. Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Mol Microbiol 62:1132–1143. doi:10.1111/j.1365-2958.2006.05427.x. PubMed DOI
Blasdel BG, Chevallereau A, Monot M, Lavigne R, Debarbieux L. 2017. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. ISME J 11:1988–1996. doi:10.1038/ismej.2017.63. PubMed DOI PMC
Chevallereau A, Blasdel BG, De Smet J, Monot M, Zimmermann M, Kogadeeva M, Sauer U, Jorth P, Whiteley M, Debarbieux L, Lavigne R. 2016. Next-generation “-omics” approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa. PLoS Genet 12:e1006134. doi:10.1371/journal.pgen.1006134. PubMed DOI PMC
Doron S, Fedida A, Hernandez-Prieto MA, Sabehi G, Karunker I, Stazic D, Feingersch R, Steglich C, Futschik M, Lindell D, Sorek R. 2016. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J 10:1437–1455. doi:10.1038/ismej.2015.210. PubMed DOI PMC
Rees PJ, Fry BA. 1983. Structure and properties of the rapidly sedimenting replicating complex of staphylococcal phage K DNA. J Gen Virol 64:191–198. doi:10.1099/0022-1317-64-1-191. PubMed DOI
Dehbi M, Moeck G, Arhin FF, Bauda P, Bergeron D, Kwan T, Liu J, McCarty J, Dubow M, Pelletier J. 2009. Inhibition of transcription in Staphylococcus aureus by a primary sigma factor-binding polypeptide from phage G1. J Bacteriol 191:3763–3771. doi:10.1128/JB.00241-09. PubMed DOI PMC
Bloch S, Lewandowska N, Węgrzyn G, Nejman-Faleńczyk B. 2021. Bacteriophages as sources of small non-coding RNA molecules. Plasmid 113:102527. doi:10.1016/j.plasmid.2020.102527. PubMed DOI
Leskinen K, Blasdel BG, Lavigne R, Skurnik M. 2016. RNA-sequencing reveals the progression of phage-host interactions between φR1-37 and Yersinia enterocolitica. Viruses 8:111. doi:10.3390/v8040111. PubMed DOI PMC
Weinberg Z, Lunse CE, Corbino KA, Ames TD, Nelson JW, Roth A, Perkins KR, Sherlock ME, Breaker RR. 2017. Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. Nucleic Acids Res 45:10811–10823. doi:10.1093/nar/gkx699. PubMed DOI PMC
Cousin FJ, Lynch DB, Chuat V, Bourin MJB, Casey PG, Dalmasso M, Harris HMB, McCann A, O'Toole PW. 2017. A long and abundant non-coding RNA in Lactobacillus salivarius. Microb Genom 3:e000126. doi:10.1099/mgen.0.000126. PubMed DOI PMC
Harris KA, Breaker RR. 2018. Large noncoding RNAs in bacteria. Microbiol Spectr 6:RWR-0005-2017. doi:10.1128/microbiolspec.RWR-0005-2017. PubMed DOI PMC
Zhao X, Chen C, Shen W, Huang G, Le S, Lu S, Li M, Zhao Y, Wang J, Rao X, Li G, Shen M, Guo K, Yang Y, Tan Y, Hu F. 2016. Global transcriptomic analysis of interactions between Pseudomonas aeruginosa and bacteriophage PaP3. Sci Rep 6:19237. doi:10.1038/srep19237. PubMed DOI PMC
Lood C, Danis-Wlodarczyk K, Blasdel BG, Jang HB, Vandenheuvel D, Briers Y, Noben JP, van Noort V, Drulis-Kawa Z, Lavigne R. 2020. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol 22:2165–2181. doi:10.1111/1462-2920.14979. PubMed DOI PMC
Sacher JC, Flint A, Butcher J, Blasdel B, Reynolds HM, Lavigne R, Stintzi A, Szymanski CM. 2018. Transcriptomic analysis of the Campylobacter jejuni response to T4-like phage NCTC 12673 infection. Viruses 10:332. doi:10.3390/v10060332. PubMed DOI PMC
Zhao X, Shen M, Jiang X, Shen W, Zhong Q, Yang Y, Tan Y, Agnello M, He X, Hu F, Le S. 2017. Transcriptomic and metabolomics profiling of phage-host interactions between phage PaP1 and Pseudomonas aeruginosa. Front Microbiol 8:548. doi:10.3389/fmicb.2017.00548. PubMed DOI PMC
Rees PJ, Fry BA. 1981. The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus. J Gen Virol 53:293–307. doi:10.1099/0022-1317-53-2-293. PubMed DOI
Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunman PM. 2006. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756. doi:10.1128/JB.00609-06. PubMed DOI PMC
Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong YQ. 2004. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 40:1–9. doi:10.1016/S0928-8244(03)00309-2. PubMed DOI
Ibarra JA, Perez-Rueda E, Carroll RK, Shaw LN. 2013. Global analysis of transcriptional regulators in Staphylococcus aureus. BMC Genomics 14:126. doi:10.1186/1471-2164-14-126. PubMed DOI PMC
Tomasini A, Francois P, Howden BP, Fechter P, Romby P, Caldelari I. 2014. The importance of regulatory RNAs in Staphylococcus aureus. Infect Genet Evol 21:616–626. doi:10.1016/j.meegid.2013.11.016. PubMed DOI
Ziebandt AK, Kusch H, Degner M, Jaglitz S, Sibbald MJ, Arends JP, Chlebowicz MA, Albrecht D, Pantucek R, Doskar J, Ziebuhr W, Broker BM, Hecker M, van Dijl JM, Engelmann S. 2010. Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Proteomics 10:1634–1644. doi:10.1002/pmic.200900313. PubMed DOI
Herbert S, Ziebandt AK, Ohlsen K, Schafer T, Hecker M, Albrecht D, Novick R, Götz F. 2010. Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Infect Immun 78:2877–2889. doi:10.1128/IAI.00088-10. PubMed DOI PMC
Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, Bröker BM, Doskar J, Wolz C. 2009. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 191:3462–3468. doi:10.1128/JB.01804-08. PubMed DOI PMC
Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, Chee MSJ, Fitzgerald JR, Penadés JR. 2018. Genome hypermobility by lateral transduction. Science 362:207–212. doi:10.1126/science.aat5867. PubMed DOI
Humphrey S, San Millan A, Toll-Riera M, Connolly J, Flor-Duro A, Chen J, Ubeda C, MacLean RC, Penadés JR. 2021. Staphylococcal phages and pathogenicity islands drive plasmid evolution. Nat Commun 12:5845. doi:10.1038/s41467-021-26101-5. PubMed DOI PMC
Humphrey S, Fillol-Salom A, Quiles-Puchalt N, Ibarra-Chávez R, Haag AF, Chen J, Penadés JR. 2021. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat Commun 12:6509. doi:10.1038/s41467-021-26004-5. PubMed DOI PMC
Haag AF, Podkowik M, Ibarra-Chávez R, GallegoDel Sol F, Ram G, Chen J, Marina A, Novick RP, Penadés JR. 2021. A regulatory cascade controls Staphylococcus aureus pathogenicity island activation. Nat Microbiol 6:1300–1308. doi:10.1038/s41564-021-00956-2. PubMed DOI PMC
Boyd EF, Davis BM, Hochhut B. 2001. Bacteriophage-bacteriophage interactions in the evolution of pathogenic bacteria. Trends Microbiol 9:137–144. doi:10.1016/s0966-842x(01)01960-6. PubMed DOI
Chlebowicz MA, Mašlaňová I, Kuntová L, Grundmann H, Pantůček R, Doškař J, van Dijl JM, Buist G. 2014. The Staphylococcal Cassette Chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. Int J Med Microbiol 304:764–774. doi:10.1016/j.ijmm.2014.05.010. PubMed DOI
Mašlaňová I, Doškař J, Varga M, Kuntová L, Mužík J, Malúšková D, Růžičková V, Pantůček R. 2013. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ Microbiol Rep 5:66–73. doi:10.1111/j.1758-2229.2012.00378.x. PubMed DOI
Kizziah JL, Manning KA, Dearborn AD, Dokland T. 2020. Structure of the host cell recognition and penetration machinery of a Staphylococcus aureus bacteriophage. PLoS Pathog 16:e1008314. doi:10.1371/journal.ppat.1008314. PubMed DOI PMC
Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. 2021. Molecular basis of lysis-lysogeny decisions in Gram-positive phages. Annu Rev Microbiol 75:563–581. doi:10.1146/annurev-micro-033121-020757. PubMed DOI
Kreiswirth BN, Löfdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, Novick RP. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712. doi:10.1038/305709a0. PubMed DOI
Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ. 2002. σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325–4. J Bacteriol 184:5457–5467. doi:10.1128/JB.184.19.5457-5467.2002. PubMed DOI PMC
Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K. 2008. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300–310. doi:10.1128/JB.01000-07. PubMed DOI PMC
Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 70:e102. doi:10.1002/cpbi.102. PubMed DOI
Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, 3rd, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. doi:10.1038/srep08365. PubMed DOI PMC
Okonechnikov K, Golosova O, Fursov M, Team U, UGENE team. 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. doi:10.1093/bioinformatics/bts091. PubMed DOI
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. 2005. InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120. doi:10.1093/nar/gki442. PubMed DOI PMC
de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J. 2012. PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13:299. doi:10.1186/1471-2164-13-299. PubMed DOI PMC
Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36. https://www.aaai.org/Papers/ISMB/1994/ISMB94-004.pdf. PubMed
Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188–1190. doi:10.1101/gr.849004. PubMed DOI PMC
Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R. 2001. RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29:4724–4735. doi:10.1093/nar/29.22.4724. PubMed DOI PMC
Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. 2011. ViennaRNA package 2.0. Algorithms Mol Biol 6:26. doi:10.1186/1748-7188-6-26. PubMed DOI PMC
Herbig A, Nieselt K. 2011. nocoRNAc: characterization of non-coding RNAs in prokaryotes. BMC Bioinformatics 12:40. doi:10.1186/1471-2105-12-40. PubMed DOI PMC
Raden M, Ali SM, Alkhnbashi OS, Busch A, Costa F, Davis JA, Eggenhofer F, Gelhausen R, Georg J, Heyne S, Hiller M, Kundu K, Kleinkauf R, Lott SC, Mohamed MM, Mattheis A, Miladi M, Richter AS, Will S, Wolff J, Wright PR, Backofen R. 2018. Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res 46:W25–W29. doi:10.1093/nar/gky329. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC
R Core Team. 2021. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. doi:10.1093/bioinformatics/btw313. PubMed DOI
Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. 2017. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45:D183–D189. doi:10.1093/nar/gkw1138. PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M. 2022. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci 31:47–53. doi:10.1002/pro.4172. PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303. PubMed DOI PMC
Bindea G, Galon J, Mlecnik B. 2013. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29:661–663. doi:10.1093/bioinformatics/btt019. PubMed DOI PMC
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J. 2009. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. doi:10.1093/bioinformatics/btp101. PubMed DOI PMC