Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27469164
PubMed Central
PMC4995954
DOI
10.1073/pnas.1605883113
PII: 1605883113
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus, bacteriophage, contraction, genome release, structure,
- MeSH
- elektronová kryomikroskopie MeSH
- genom virový * MeSH
- Myoviridae genetika fyziologie ultrastruktura MeSH
- Staphylococcus aureus virologie MeSH
- virové plášťové proteiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové plášťové proteiny MeSH
Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with "double-layered" baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome's release.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic;
Department of Experimental Biology Faculty of Science Masaryk University 611 37 Brno Czech Republic
Zobrazit více v PubMed
Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7(9):629–641. PubMed PMC
Pantůcek R, et al. The polyvalent staphylococcal phage phi 812: Its host-range mutants and related phages. Virology. 1998;246(2):241–252. PubMed
Alves DR, et al. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol. 2014;80(21):6694–6703. PubMed PMC
Lu TK, Koeris MS. The next generation of bacteriophage therapy. Curr Opin Microbiol. 2011;14(5):524–531. PubMed
Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L, Rami-Shojaei S, Brüssow H. Lactobacillus plantarum bacteriophage LP65: A new member of the SPO1-like genus of the family Myoviridae. J Bacteriol. 2004;186(21):7069–7083. PubMed PMC
Kutter EM, et al. Characterization of a ViI-like phage specific to Escherichia coli O157:H7. Virol J. 2011;8:430. PubMed PMC
Arachchi GJ, et al. Characteristics of three listeriaphages isolated from New Zealand seafood environments. J Appl Microbiol. 2013;115(6):1427–1438. PubMed
Habann M, et al. Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Mol Microbiol. 2014;92(1):84–99. PubMed
O’Flaherty S, et al. Genome of staphylococcal phage K: A new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. J Bacteriol. 2004;186(9):2862–2871. PubMed PMC
Villa E, Schaffer M, Plitzko JM, Baumeister W. Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol. 2013;23(5):771–777. PubMed
Eyer L, et al. Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. Proteomics. 2007;7(1):64–72. PubMed
Moody MF. Sheath of bacteriophage T4. 3. Contraction mechanism deduced from partially contracted sheaths. J Mol Biol. 1973;80(4):613–635. PubMed
Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell. 2004;118(4):419–429. PubMed
Kikuchi Y, King J. Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J Mol Biol. 1975;99(4):673–694. PubMed
Kikuchi Y, King J. Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J Mol Biol. 1975;99(4):645–672. PubMed
Kikuchi Y, King J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol. 1975;99(4):695–716. PubMed
Kostyuchenko VA, et al. Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol. 2003;10(9):688–693. PubMed
Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG. Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci. 2003;60(11):2356–2370. PubMed PMC
Crowther RA, Lenk EV, Kikuchi Y, King J. Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. J Mol Biol. 1977;116(3):489–523. PubMed
Cerritelli ME, Wall JS, Simon MN, Conway JF, Steven AC. Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: A hinged viral adhesin. J Mol Biol. 1996;260(5):767–780. PubMed
Simon LD, Anderson TF. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. II. Structure and function of the baseplate. Virology. 1967;32(2):298–305. PubMed
Kostyuchenko VA, et al. The structure of bacteriophage T4 gene product 9: The trigger for tail contraction. Structure. 1999;7(10):1213–1222. PubMed
Crowther RA. Mutants of bacteriophage T4 that produce infective fibreless particles. J Mol Biol. 1980;137(2):159–174. PubMed
Sciara G, et al. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc Natl Acad Sci USA. 2010;107(15):6852–6857. PubMed PMC
Spinelli S, et al. Cryo-electron microscopy structure of lactococcal siphophage 1358 virion. J Virol. 2014;88(16):8900–8910. PubMed PMC
Veesler D, Cambillau C. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev. 2011;75(3):423–433. PubMed PMC
Aksyuk AA, et al. Structural conservation of the myoviridae phage tail sheath protein fold. Structure. 2011;19(12):1885–1894. PubMed PMC
Aksyuk AA, et al. The tail sheath structure of bacteriophage T4: A molecular machine for infecting bacteria. EMBO J. 2009;28(7):821–829. PubMed PMC
Aksyuk AA, et al. Structural investigations of a Podoviridae streptococcus phage C1, implications for the mechanism of viral entry. Proc Natl Acad Sci USA. 2012;109(35):14001–14006. PubMed PMC
Moody MF. Structure of the sheath of bacteriophage T4. I. Structure of the contracted sheath and polysheath. J Mol Biol. 1967;25(2):167–200. PubMed
Arisaka F, Tschopp J, Van Driel R, Engel J. Reassembly of the bacteriophage T4 tail from the core-baseplate and the monomeric sheath protein P18: A co-operative association process. J Mol Biol. 1979;132(3):369–386. PubMed
Aksyuk AA, Rossmann MG. Bacteriophage assembly. Viruses. 2011;3(3):172–203. PubMed PMC
Leiman PG, Shneider MM. Contractile tail machines of bacteriophages. Adv Exp Med Biol. 2012;726:93–114. PubMed
Plisson C, et al. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J. 2007;26(15):3720–3728. PubMed PMC
Sun L, et al. Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat Commun. 2015;6:7548. PubMed PMC
Simpson AA, et al. Structure of the bacteriophage phi29 DNA packaging motor. Nature. 2000;408(6813):745–750. PubMed PMC
Lebedev AA, et al. Structural framework for DNA translocation via the viral portal protein. EMBO J. 2007;26(7):1984–1994. PubMed PMC
Olia AS, Prevelige PE, Jr, Johnson JE, Cingolani G. Three-dimensional structure of a viral genome-delivery portal vertex. Nat Struct Mol Biol. 2011;18(5):597–603. PubMed PMC
Wikoff WR, et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science. 2000;289(5487):2129–2133. PubMed
Qin L, Fokine A, O’Donnell E, Rao VB, Rossmann MG. Structure of the small outer capsid protein, Soc: A clamp for stabilizing capsids of T4-like phages. J Mol Biol. 2010;395(4):728–741. PubMed PMC
Olson NH, Gingery M, Eiserling FA, Baker TS. The structure of isometric capsids of bacteriophage T4. Virology. 2001;279(2):385–391. PubMed
Fokine A, et al. Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci USA. 2005;102(20):7163–7168. PubMed PMC
Parent KN, et al. P22 coat protein structures reveal a novel mechanism for capsid maturation: Stability without auxiliary proteins or chemical crosslinks. Structure. 2010;18(3):390–401. PubMed PMC
Hua J. 2010. Regulation of capsid sizes of large tailed bacteriophages. PhD thesis (University of Pittsburgh, Pittsburgh, PA)
Tang G, et al. EMAN2: An extensible image processing suite for electron microscopy. J Struct Biol. 2007;157(1):38–46. PubMed
R-Type Fonticins Produced by Pragia fontium Form Large Pores with High Conductance
Structure and mechanism of DNA delivery of a gene transfer agent
Structure and genome ejection mechanism of Staphylococcus aureus phage P68