Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate

. 2016 Aug 16 ; 113 (33) : 9351-6. [epub] 20160728

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27469164

Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with "double-layered" baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome's release.

Zobrazit více v PubMed

Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7(9):629–641. PubMed PMC

Pantůcek R, et al. The polyvalent staphylococcal phage phi 812: Its host-range mutants and related phages. Virology. 1998;246(2):241–252. PubMed

Alves DR, et al. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol. 2014;80(21):6694–6703. PubMed PMC

Lu TK, Koeris MS. The next generation of bacteriophage therapy. Curr Opin Microbiol. 2011;14(5):524–531. PubMed

Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L, Rami-Shojaei S, Brüssow H. Lactobacillus plantarum bacteriophage LP65: A new member of the SPO1-like genus of the family Myoviridae. J Bacteriol. 2004;186(21):7069–7083. PubMed PMC

Kutter EM, et al. Characterization of a ViI-like phage specific to Escherichia coli O157:H7. Virol J. 2011;8:430. PubMed PMC

Arachchi GJ, et al. Characteristics of three listeriaphages isolated from New Zealand seafood environments. J Appl Microbiol. 2013;115(6):1427–1438. PubMed

Habann M, et al. Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Mol Microbiol. 2014;92(1):84–99. PubMed

O’Flaherty S, et al. Genome of staphylococcal phage K: A new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. J Bacteriol. 2004;186(9):2862–2871. PubMed PMC

Villa E, Schaffer M, Plitzko JM, Baumeister W. Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol. 2013;23(5):771–777. PubMed

Eyer L, et al. Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. Proteomics. 2007;7(1):64–72. PubMed

Moody MF. Sheath of bacteriophage T4. 3. Contraction mechanism deduced from partially contracted sheaths. J Mol Biol. 1973;80(4):613–635. PubMed

Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell. 2004;118(4):419–429. PubMed

Kikuchi Y, King J. Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J Mol Biol. 1975;99(4):673–694. PubMed

Kikuchi Y, King J. Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J Mol Biol. 1975;99(4):645–672. PubMed

Kikuchi Y, King J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol. 1975;99(4):695–716. PubMed

Kostyuchenko VA, et al. Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol. 2003;10(9):688–693. PubMed

Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG. Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci. 2003;60(11):2356–2370. PubMed PMC

Crowther RA, Lenk EV, Kikuchi Y, King J. Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. J Mol Biol. 1977;116(3):489–523. PubMed

Cerritelli ME, Wall JS, Simon MN, Conway JF, Steven AC. Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: A hinged viral adhesin. J Mol Biol. 1996;260(5):767–780. PubMed

Simon LD, Anderson TF. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. II. Structure and function of the baseplate. Virology. 1967;32(2):298–305. PubMed

Kostyuchenko VA, et al. The structure of bacteriophage T4 gene product 9: The trigger for tail contraction. Structure. 1999;7(10):1213–1222. PubMed

Crowther RA. Mutants of bacteriophage T4 that produce infective fibreless particles. J Mol Biol. 1980;137(2):159–174. PubMed

Sciara G, et al. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc Natl Acad Sci USA. 2010;107(15):6852–6857. PubMed PMC

Spinelli S, et al. Cryo-electron microscopy structure of lactococcal siphophage 1358 virion. J Virol. 2014;88(16):8900–8910. PubMed PMC

Veesler D, Cambillau C. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev. 2011;75(3):423–433. PubMed PMC

Aksyuk AA, et al. Structural conservation of the myoviridae phage tail sheath protein fold. Structure. 2011;19(12):1885–1894. PubMed PMC

Aksyuk AA, et al. The tail sheath structure of bacteriophage T4: A molecular machine for infecting bacteria. EMBO J. 2009;28(7):821–829. PubMed PMC

Aksyuk AA, et al. Structural investigations of a Podoviridae streptococcus phage C1, implications for the mechanism of viral entry. Proc Natl Acad Sci USA. 2012;109(35):14001–14006. PubMed PMC

Moody MF. Structure of the sheath of bacteriophage T4. I. Structure of the contracted sheath and polysheath. J Mol Biol. 1967;25(2):167–200. PubMed

Arisaka F, Tschopp J, Van Driel R, Engel J. Reassembly of the bacteriophage T4 tail from the core-baseplate and the monomeric sheath protein P18: A co-operative association process. J Mol Biol. 1979;132(3):369–386. PubMed

Aksyuk AA, Rossmann MG. Bacteriophage assembly. Viruses. 2011;3(3):172–203. PubMed PMC

Leiman PG, Shneider MM. Contractile tail machines of bacteriophages. Adv Exp Med Biol. 2012;726:93–114. PubMed

Plisson C, et al. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J. 2007;26(15):3720–3728. PubMed PMC

Sun L, et al. Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat Commun. 2015;6:7548. PubMed PMC

Simpson AA, et al. Structure of the bacteriophage phi29 DNA packaging motor. Nature. 2000;408(6813):745–750. PubMed PMC

Lebedev AA, et al. Structural framework for DNA translocation via the viral portal protein. EMBO J. 2007;26(7):1984–1994. PubMed PMC

Olia AS, Prevelige PE, Jr, Johnson JE, Cingolani G. Three-dimensional structure of a viral genome-delivery portal vertex. Nat Struct Mol Biol. 2011;18(5):597–603. PubMed PMC

Wikoff WR, et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science. 2000;289(5487):2129–2133. PubMed

Qin L, Fokine A, O’Donnell E, Rao VB, Rossmann MG. Structure of the small outer capsid protein, Soc: A clamp for stabilizing capsids of T4-like phages. J Mol Biol. 2010;395(4):728–741. PubMed PMC

Olson NH, Gingery M, Eiserling FA, Baker TS. The structure of isometric capsids of bacteriophage T4. Virology. 2001;279(2):385–391. PubMed

Fokine A, et al. Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci USA. 2005;102(20):7163–7168. PubMed PMC

Parent KN, et al. P22 coat protein structures reveal a novel mechanism for capsid maturation: Stability without auxiliary proteins or chemical crosslinks. Structure. 2010;18(3):390–401. PubMed PMC

Hua J. 2010. Regulation of capsid sizes of large tailed bacteriophages. PhD thesis (University of Pittsburgh, Pittsburgh, PA)

Tang G, et al. EMAN2: An extensible image processing suite for electron microscopy. J Struct Biol. 2007;157(1):38–46. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Staphylococcus aureus Prophage-Encoded Protein Causes Abortive Infection and Provides Population Immunity against Kayviruses

. 2023 Apr 25 ; 14 (2) : e0249022. [epub] 20230213

R-Type Fonticins Produced by Pragia fontium Form Large Pores with High Conductance

. 2023 Jan 26 ; 205 (1) : e0031522. [epub] 20221221

Global Transcriptomic Analysis of Bacteriophage-Host Interactions between a Kayvirus Therapeutic Phage and Staphylococcus aureus

. 2022 Jun 29 ; 10 (3) : e0012322. [epub] 20220418

Structure and mechanism of DNA delivery of a gene transfer agent

. 2020 Jun 15 ; 11 (1) : 3034. [epub] 20200615

Structure and genome ejection mechanism of Staphylococcus aureus phage P68

. 2019 Oct ; 5 (10) : eaaw7414. [epub] 20191016

Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci

. 2019 Apr 02 ; 9 (1) : 5475. [epub] 20190402

Antimicrobial effect of commercial phage preparation Stafal® on biofilm and planktonic forms of methicillin-resistant Staphylococcus aureus

. 2019 Jan ; 64 (1) : 121-126. [epub] 20180620

Rapid Identification of Intact Staphylococcal Bacteriophages Using Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry

. 2018 Apr 04 ; 10 (4) : . [epub] 20180404

Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity

. 2018 Feb ; 54 (1) : 130-139. [epub] 20170829

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...