• This record comes from PubMed

CRISPR-Cas10-Assisted Structural Modification of Staphylococcal Kayvirus for Imaging and Biosensing Applications

. 2025 Aug 15 ; 14 (8) : 2979-2986. [epub] 20250728

Status In-Process Language English Country United States Media print-electronic

Document type Journal Article

Recent advances in genome editing techniques based on CRISPR-Cas have opened up new possibilities in bacteriophage engineering and, thus, enabled key developments in medicine, nanotechnology, and synthetic biology. Although staphylococcal phage genomes have already been edited, the modification of their structural proteins has not yet been reported. Here, the structure of Staphylococcus phage 812h1 of the Kayvirus genus was modified by inserting a poly histidine tag into an exposed loop of the tail sheath protein. A two-strain editing strategy was applied, utilizing homologous recombination followed by CRISPR-Cas10-assisted counter-selection of the recombinant phages. The His-tagged phage particles can be recognized by specific antibodies, enabling the modified bacteriophages to be employed in numerous techniques. The attachment of the engineered phage to bacteria was visualized by fluorescence microscopy, and its functionality was confirmed using biolayer interferometry biosensing, enzyme-linked immunosorbent assay, and flow cytometry, demonstrating that the genetic modification did not impair its biological activity.

See more in PubMed

Clokie M. R. J., Millard A. D., Letarov A. V., Heaphy S.. Phages in Nature. Bacteriophage. 2011;1:31–45. doi: 10.4161/bact.1.1.14942. PubMed DOI PMC

Bárdy P., Pantůček R., Benešík M., Doškař J.. Genetically Modified Bacteriophages in Applied Microbiology. J. Appl. Microbiol. 2016;121:618–633. doi: 10.1111/jam.13207. PubMed DOI

Chen, Y. ; Batra, H. ; Dong, J. ; Chen, C. ; Rao, V. B. ; Tao, P. . Genetic Engineering of Bacteriophages against Infectious Diseases. Front. Microbiol. 2019, 10, (954). 10.3389/fmicb.2019.00954. PubMed DOI PMC

Pires D. P., Cleto S., Sillankorva S., Azeredo J., Lu T. K.. Genetically Engineered Phages: A Review of Advances over the Last Decade. Microbiol. Mol. Biol. Rev. 2016;80:523–543. doi: 10.1128/MMBR.00069-15. PubMed DOI PMC

Yosef I., Goren M. G., Globus R., Molshanski-Mor S., Qimron U.. Extending the Host Range of Bacteriophage Particles for DNA Transduction. Mol. Cell. 2017;66:721–728. doi: 10.1016/j.molcel.2017.04.025. PubMed DOI

Jia H.-J., Jia P.-P., Yin S., Bu L.-K., Yang G., Pei D.-S.. Engineering Bacteriophages for Enhanced Host Range and Efficacy: Insights from Bacteriophage-Bacteria Interactions. Front. Microbiol. 2023;14:1172635. doi: 10.3389/fmicb.2023.1172635. PubMed DOI PMC

Edgar R., Friedman N., Molshanski-Mor S., Qimron U.. Reversing Bacterial Resistance to Antibiotics by Phage-Mediated Delivery of Dominant Sensitive Genes. Appl. Environ. Microbiol. 2012;78:744–751. doi: 10.1128/AEM.05741-11. PubMed DOI PMC

Łobocka M., Dąbrowska K., Górski A.. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs. 2021;35:255–280. doi: 10.1007/s40259-021-00480-z. PubMed DOI PMC

Meile, S. ; Du, J. ; Staubli, S. ; Grossmann, S. ; Koliwer-Brandl, H. ; Piffaretti, P. ; Leitner, L. ; Matter, C. I. ; Baggenstos, J. ; Hunold, L. ; et al. Engineered Reporter Phages for Detection of PubMed DOI PMC

Farooq U., Yang Q., Ullah M. W., Wang S.. Bacterial Biosensing: Recent Advances in Phage-Based Bioassays and Biosensors. Biosens. Bioelectron. 2018;118:204–216. doi: 10.1016/j.bios.2018.07.058. PubMed DOI

Bikard D., Euler C. W., Jiang W., Nussenzweig P. M., Goldberg G. W., Duportet X., Fischetti V. A., Marraffini L. A.. Exploiting CRISPR-Cas Nucleases to Produce Sequence-Specific Antimicrobials. Nat. Biotechnol. 2014;32:1146–1150. doi: 10.1038/nbt.3043. PubMed DOI PMC

Cobb L. H., Park J., Swanson E. A., Beard M. C., McCabe E. M., Rourke A. S., Seo K. S., Olivier A. K., Priddy L. B.. Crispr-Cas9Modified Bacteriophage for Treatment of Staphylococcus aureus Induced Osteomyelitis and Soft Tissue Infection. PloS One. 2019;14:e0220421. doi: 10.1371/journal.pone.0220421. PubMed DOI PMC

Gencay Y. E., Jasinskytė D., Robert C., Semsey S., Martínez V., Petersen A. Ø., Brunner K., de Santiago Torio A., Salazar A., Turcu I. C.. et al. Engineered Phage with Antibacterial CRISPR-Cas Selectively Reduce E. coli Burden in Mice. Nat. Biotechnol. 2024;42:265–274. doi: 10.1038/s41587-023-01759-y. PubMed DOI PMC

Ram G., Ross H. F., Novick R. P., Rodriguez-Pagan I., Jiang D.. Conversion of Staphylococcal Pathogenicity Islands to CRISPR-Carrying Antibacterial Agents That Cure Infections in Mice. Nat. Biotechnol. 2018;36:971–976. doi: 10.1038/nbt.4203. PubMed DOI PMC

Novick R. P.. Antibacterial Particles and Predatory Bacteria as Alternatives to Antibacterial Chemicals in the Era of Antibiotic Resistance. Curr. Opin. Microbiol. 2021;64:109–116. doi: 10.1016/j.mib.2021.09.016. PubMed DOI PMC

Shabbir, M. A. B. ; Hao, H. ; Shabbir, M. Z. ; Wu, Q. ; Sattar, A. ; Yuan, Z. . Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals. Front. Microbiol. 2016, 7, (1292). 10.3389/fmicb.2016.01292. PubMed DOI PMC

Rees P. J., Fry B. A.. The Morphology of Staphylococcal Bacteriophage K and DNA Metabolism in Infected Staphylococcus aureus . J. Gen. Virol. 1981;53:293–307. doi: 10.1099/0022-1317-53-2-293. PubMed DOI

Chaikeeratisak V., Nguyen K., Khanna K., Brilot A. F., Erb M. L., Coker J. K., Vavilina A., Newton G. L., Buschauer R., Pogliano K.. et al. Assembly of a Nucleus-Like Structure During Viral Replication in Bacteria. Science. 2017;355:194–197. doi: 10.1126/science.aal2130. PubMed DOI PMC

Kiro R., Shitrit D., Qimron U.. Efficient Engineering of a Bacteriophage Genome Using the Type I-E CRISPR-Cas System. RNA Biol. 2014;11:42–44. doi: 10.4161/rna.27766. PubMed DOI PMC

Tao P., Wu X., Tang W.-C., Zhu J., Rao V.. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth. Biol. 2017;6:1952–1961. doi: 10.1021/acssynbio.7b00179. PubMed DOI PMC

Adler B. A., Hessler T., Cress B. F., Lahiri A., Mutalik V. K., Barrangou R., Banfield J., Doudna J. A.. Broad-Spectrum CRISPR-Cas13a Enables Efficient Phage Genome Editing. Nat. Microbiol. 2022;7:1967–1979. doi: 10.1038/s41564-022-01258-x. PubMed DOI PMC

Martel B., Moineau S.. CRISPR-Cas: An Efficient Tool for Genome Engineering of Virulent Bacteriophages. Nucleic Acids Res. 2014;42:9504–9513. doi: 10.1093/nar/gku628. PubMed DOI PMC

Box A. M., McGuffie M. J., O’Hara B. J., Seed K. D.. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering. J. Bacteriol. 2016;198:578–590. doi: 10.1128/JB.00747-15. PubMed DOI PMC

Lemay, M.-L. ; Renaud, A. C. ; Rousseau, G. M. ; Moineau, S. . Targeted Genome Editing of Virulent Phages Using CRISPR-Cas9. Bio-Protoc. 2018, 8, (e2674). 10.21769/BioProtoc.2674. PubMed DOI PMC

Shen J., Zhou J., Chen G.-Q., Xiu Z.-L.. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9. J. Virol. 2018;92:e00534-18. doi: 10.1128/JVI.00534-18. PubMed DOI PMC

Chen Y., Yan B., Chen W., Zhang X., Liu Z., Zhang Q., Li L., Hu M., Zhao X., Xu X.. Development of the CRISPR-Cas12a System for Editing of Pseudomonas aeruginosa Phages. iScience. 2024;27:110210. doi: 10.1016/j.isci.2024.110210. PubMed DOI PMC

Hupfeld M., Trasanidou D., Ramazzini L., Klumpp J., Loessner M. J., Kilcher S.. A Functional Type II-a CRISPR-Cas System from Listeria Enables Efficient Genome Editing of Large Non-Integrating Bacteriophage. Nucleic Acids Res. 2018;46:6920–6933. doi: 10.1093/nar/gky544. PubMed DOI PMC

Bari S. M. N., Walker F. C., Cater K., Aslan B., Hatoum-Aslan A.. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10. ACS Synth. Biol. 2017;6:2316–2325. doi: 10.1021/acssynbio.7b00240. PubMed DOI PMC

Nayeemul Bari S.M., Hatoum-Aslan A.. CRISPR-Cas10 Assisted Editing of Virulent Staphylococcal Phages. Methods Enzymol. 2019;616:385–409. doi: 10.1016/bs.mie.2018.10.023. PubMed DOI

Nováček J., Šiborová M., Benešík M., Pantůček R., Doškař J., Plevka P.. Structure and Genome Release of Twort-Like Myoviridae Phage with a Double-Layered Baseplate. Proc. Natl. Acad. Sci. U.S.A. 2016;113:9351–9356. doi: 10.1073/pnas.1605883113. PubMed DOI PMC

Eyer L., Pantůček R., Zdráhal Z., Konečná H., Kašpárek P., Růžičková V., Hernychová L., Preisler J., Doškař J.. Structural Protein Analysis of the Polyvalent Staphylococcal Bacteriophage 812. Proteomics. 2007;7:64–72. doi: 10.1002/pmic.200600280. PubMed DOI

Finstrlová A., Mašlaňová I., Blasdel Reuter B. G., Doškař J., Götz F., Pantůček R.. Global Transcriptomic Analysis of Bacteriophage-Host Interactions between a Kayvirus Therapeutic Phage and Staphylococcus aureus . Microbiol. Spectr. 2022;10:e00123-22. doi: 10.1128/spectrum.00123-22. PubMed DOI PMC

Botka, T. ; Pantůček, R. ; Mašlaňová, I. ; Benešík, M. ; Petráš, P. ; Růžičková, V. ; Havlíčková, P. ; Varga, M. ; Zemličková, H. ; Koláčková, I. ; et al. Lytic and Genomic Properties of Spontaneous Host-Range PubMed DOI PMC

Ajuebor J., Buttimer C., Arroyo-Moreno S., Chanishvili N., Gabriel E. M., O’Mahony J., McAuliffe O., Neve H., Franz C., Coffey A.. Comparison of Staphylococcus Phage K with Close Phage Relatives Commonly Employed in Phage Therapeutics. Antibiotics (Basel) 2018;7(37):37. doi: 10.3390/antibiotics7020037. PubMed DOI PMC

Petrovic Fabijan A., Lin R. C. Y., Ho J., Maddocks S., Ben Zakour N. L., Iredell J. R.. et al. Safety of Bacteriophage Therapy in Severe Staphylococcus aureus Infection. Nat. Microbiol. 2020;5:465–472. doi: 10.1038/s41564-019-0634-z. PubMed DOI

Bíňovský J., Šiborová M., Nováček J., Bárdy P., Baška R., Škubník K., Botka T., Benešík M., Pantůček R., Tripsianes K.. et al. Cell Attachment and Tail Contraction of Staphylococcus aureus Phage phi812. bioRxiv. 2024 doi: 10.1101/2024.09.19.613683. preprint. DOI

Penewit K., Holmes E. A., McLean K., Ren M., Waalkes A., Salipante S. J.. Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection. mBio. 2018;9:e00067-18. doi: 10.1128/mBio.00067-18. PubMed DOI PMC

Needham, P. ; Page, R. C. ; Yehl, K. . Phage-Layer Interferometry: A Companion Diagnostic for Phage Therapy and a Bacterial Testing Platform. Sci. Rep. 2024, 14, (6026). 10.1038/s41598-024-55776-1. PubMed DOI PMC

Åman T., Auer S., Hytönen V. P., Määttä J. A.. Performance of Label-Free Biosensors as a Function of Layer Thickness. Biosens. Bioelectron. X. 2024;21:100556. doi: 10.1016/j.biosx.2024.100556. DOI

De Keyser P., Kalichuk V., Zögg T., Wohlkönig A., Schenck S., Brunner J., Pardon E., Steyaert J.. A Biosensor-Based Phage Display Selection Method for Automated, High-Throughput Nanobody Discovery. Biosens. Bioelectron. 2025;271:116951. doi: 10.1016/j.bios.2024.116951. PubMed DOI

Deisenhofer J.. Crystallographic Refinement and Atomic Models of a Human Fc Fragment and Its Complex with Fragment B of Protein a from Staphylococcus aureus at 2.9- and 2.8-.ANG. Resolution. Biochemistry. 1981;20:2361–2370. doi: 10.1021/bi00512a001. PubMed DOI

Kreiswirth B. N., Löfdahl S., Betley M. J., O’Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P.. The Toxic Shock Syndrome Exotoxin Structural Gene Is Not Detectably Transmitted by a Prophage. Nature. 1983;305:709–712. doi: 10.1038/305709a0. PubMed DOI

Nair D., Memmi G., Hernandez D., Bard J., Beaume M., Gill S., Francois P., Cheung A. L.. Whole-Genome Sequencing of Staphylococcus aureus Strain RN4220, a Key Laboratory Strain Used in Virulence Research, Identifies Mutations That Affect Not Only Virulence Factors but Also the Fitness of the Strain. J. Bacteriol. 2011;193:2332–2335. doi: 10.1128/JB.00027-11. PubMed DOI PMC

Wagner E., Doskar J., Götz F.. Physical and Genetic Map of the Genome of Staphylococcus carnosus TM300. Microbiology. 1998;144:509–517. doi: 10.1099/00221287-144-2-509. PubMed DOI

Charpentier E., Anton A. I., Barry P., Alfonso B., Fang Y., Novick R. P.. Novel Cassette-Based Shuttle Vector System for Gram-Positive Bacteria. Appl. Environ. Microbiol. 2004;70:6076–6085. doi: 10.1128/AEM.70.10.6076-6085.2004. PubMed DOI PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A.. et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., Morris J. H., Ferrin T. E.. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...