Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci

. 2019 Apr 02 ; 9 (1) : 5475. [epub] 20190402

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30940900
Odkazy

PubMed 30940900
PubMed Central PMC6445280
DOI 10.1038/s41598-019-41868-w
PII: 10.1038/s41598-019-41868-w
Knihovny.cz E-zdroje

Lytic bacteriophages are valuable therapeutic agents against bacterial infections. There is continual effort to obtain new phages to increase the effectivity of phage preparations against emerging phage-resistant strains. Here we described the genomic diversity of spontaneous host-range mutants of kayvirus 812. Five mutant phages were isolated as rare plaques on phage-resistant Staphylococcus aureus strains. The host range of phage 812-derived mutants was 42% higher than the wild type, determined on a set of 186 methicillin-resistant S. aureus strains representing the globally circulating human and livestock-associated clones. Comparative genomics revealed that single-nucleotide polymorphisms from the parental phage 812 population were fixed in next-step mutants, mostly in genes for tail and baseplate components, and the acquired point mutations led to diverse receptor binding proteins in the phage mutants. Numerous genome changes associated with rearrangements between direct repeat motifs or intron loss were found. Alterations occurred in host-takeover and terminal genomic regions or the endolysin gene of mutants that exhibited the highest lytic activity, which implied various mechanisms of overcoming bacterial resistance. The genomic data revealed that Kayvirus spontaneous mutants are free from undesirable genes and their lytic properties proved their suitability for rapidly updating phage therapeutics.

Zobrazit více v PubMed

Pantůček R, et al. The polyvalent staphylococcal phage phi 812: its host-range mutants and related phages. Virology. 1998;246:241–252. doi: 10.1006/viro.1998.9203. PubMed DOI

Vandersteegen K, et al. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS One. 2011;6:e24418. doi: 10.1371/journal.pone.0024418. PubMed DOI PMC

Leskinen K, et al. Characterization of vB_SauM-fRuSau02, a Twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses. 2017;9:258. doi: 10.3390/v9090258. PubMed DOI PMC

Kvachadze L, et al. Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol. 2011;4:643–650. doi: 10.1111/j.1751-7915.2011.00259.x. PubMed DOI PMC

Synnott AJ, et al. Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol. 2009;75:4483–4490. doi: 10.1128/AEM.02641-08. PubMed DOI PMC

Cui Z, et al. Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China. Virol J. 2017;14:26. doi: 10.1186/s12985-017-0701-0. PubMed DOI PMC

Abatángelo V, et al. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PLoS One. 2017;12:e0181671. doi: 10.1371/journal.pone.0181671. PubMed DOI PMC

Rohde C, et al. Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses. 2018;10:178. doi: 10.3390/v10040178. PubMed DOI PMC

Pirnay J-P, et al. Quality and safety requirements for sustainable phage therapy products. Pharm Res. 2015;32:2173–2179. doi: 10.1007/s11095-014-1617-7. PubMed DOI PMC

Pelfrene E, Willebrand E, Cavaleiro Sanches A, Sebris Z, Cavaleri M. Bacteriophage therapy: a regulatory perspective. J Antimicrob Chemother. 2016;71:2071–2074. doi: 10.1093/jac/dkw083. PubMed DOI

Enav H, Kirzner S, Lindell D, Mandel-Gutfreund Y, Béjà O. Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nat Commun. 2018;9:4698. doi: 10.1038/s41467-018-07164-3. PubMed DOI PMC

Brüssow, H. Population Genomics of Bacteriophages in Population Genomics: Microorganisms (eds Polz, M. F. & Rajora, O. P.) 297–334, 10.1007/13836_2018_16 (Springer, 2019).

Magill DJ, et al. Localised genetic heterogeneity provides a novel mode of evolution in dsDNA phages. Sci Rep. 2017;7:13731. doi: 10.1038/s41598-017-14285-0. PubMed DOI PMC

Essoh C, et al. Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan, Côte d’Ivoire. PLoS One. 2015;10:e0130548. doi: 10.1371/journal.pone.0130548. PubMed DOI PMC

Moreno Switt AI, et al. Genomic characterization provides new insight into Salmonella phage diversity. BMC Genomics. 2013;14:481. doi: 10.1186/1471-2164-14-481. PubMed DOI PMC

Meyer JR, et al. Repeatability and contingency in the evolution of a key innovation in phage Lambda. Science. 2012;335:428–432. doi: 10.1126/science.1214449. PubMed DOI PMC

Paez-Espino D, et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio. 2015;6:e00262–15. doi: 10.1128/mBio.00262-15. PubMed DOI PMC

O’Flaherty S, et al. Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G + C content. J Bacteriol. 2004;186:2862–2871. doi: 10.1128/JB.186.9.2862-2871.2004. PubMed DOI PMC

O’Flaherty S, et al. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol. 2005;71:1836–1842. doi: 10.1128/AEM.71.4.1836-1842.2005. PubMed DOI PMC

Łobocka M, et al. Genomics of staphylococcal Twort-like phages-potential therapeutics of the post-antibiotic era. Adv Virus Res. 2012;83:143–216. doi: 10.1016/B978-0-12-394438-2.00005-0. PubMed DOI

Stewart CR, Yip TKS, Myles B, Laughlin L. Roles of genes 38, 39, and 40 in shutoff of host biosyntheses during infection of Bacillus subtilis by bacteriophage SPO1. Virology. 2009;392:271–274. doi: 10.1016/j.virol.2009.06.046. PubMed DOI

Stewart CR, Deery WJ, Egan ESK, Myles B, Petti AA. The product of SPO1 gene 56 inhibits host cell division during infection of Bacillus subtilis by bacteriophage SPO1. Virology. 2013;447:249–253. doi: 10.1016/j.virol.2013.09.005. PubMed DOI

Gill JJ. Revised genome sequence of Staphylococcus aureus bacteriophage K. Genome Announc. 2014;2:e01173–13. doi: 10.1128/genomeA.01173-13. PubMed DOI PMC

Lavigne R, Vandersteegen K. Group I introns in Staphylococcus bacteriophages. Future Virol. 2013;8:997–1005. doi: 10.2217/fvl.13.84. DOI

Gu J, et al. Genomic characterization of lytic Staphylococcus aureus phage GH15: providing new clues to intron shift in phages. J Gen Virol. 2013;94:906–915. doi: 10.1099/vir.0.049197-0. PubMed DOI

Benešík M, et al. Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity. Virus Genes. 2018;54:130–139. doi: 10.1007/s11262-017-1507-2. PubMed DOI

Kašpárek P, Pantůček R, Kahánková J, Růžičková V, Doškař J. Genome rearrangements in host-range mutants of the polyvalent staphylococcal bacteriophage 812. Folia Microbiol. 2007;52:331–338. doi: 10.1007/BF02932087. PubMed DOI

Rosypal S, Rosypalová A, Doškař J, Pakrová E, Genovová S. The use of the polyvalent phage 812 and its host-range mutants to the differentiation of Staphylococcus aureus from other staphylococci. Scripta Fac Sci Nat Univ Purk Brun. 1986;16:317–336.

Nováček J, et al. Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. Proc Natl Acad Sci USA. 2016;113:9351–9356. doi: 10.1073/pnas.1605883113. PubMed DOI PMC

Eyer L, et al. Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. Proteomics. 2007;7:64–72. doi: 10.1002/pmic.200600280. PubMed DOI

Sybesma W, Pirnay J-P, Expert round table on acceptance and re-implementation of bacteriophage therapy Silk route to the acceptance and re-implementation of bacteriophage therapy. Biotechnol J. 2016;11:595–600. doi: 10.1002/biot.201600023. PubMed DOI

Kwan T, Liu J, DuBow M, Gros P, Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA. 2005;102:5174–5179. doi: 10.1073/pnas.0501140102. PubMed DOI PMC

Takeuchi I, et al. The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal Twort-like phages. Appl Environ Microbiol. 2016;82:5763–5774. doi: 10.1128/AEM.01385-16. PubMed DOI PMC

Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y. Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039. Appl. Microbiol. Biotechnol. 2018;102:8963–8977. doi: 10.1007/s00253-018-9269-x. PubMed DOI

Zhang X, et al. Conserved termini and adjacent variable region of Twortlikevirus Staphylococcus phages. Virol Sin. 2015;30:433–440. doi: 10.1007/s12250-015-3643-y. PubMed DOI PMC

Cui Z, et al. Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences. Sci Rep. 2017;7:41259. doi: 10.1038/srep41259. PubMed DOI PMC

Wilson GG, Young KKY, Edlin GJ, Konigsberg W. High-frequency generalised transduction by bacteriophage T4. Nature. 1979;280:80–82. doi: 10.1038/280080a0. PubMed DOI

Young KK, Edlin GJ, Wilson GG. Genetic analysis of bacteriophage T4 transducing bacteriophages. J Virol. 1982;41:345–347. PubMed PMC

Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ. Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol. 2005;43:301–312. doi: 10.1016/j.yrtph.2005.08.005. PubMed DOI

Dwivedi B, Xue B, Lundin D, Edwards RA, Breitbart M. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol Biol. 2013;13:33. doi: 10.1186/1471-2148-13-33. PubMed DOI PMC

Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:1008–1015. PubMed PMC

Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186:1518–1530. doi: 10.1128/JB.186.5.1518-1530.2004. PubMed DOI PMC

Milheiriço C, Oliveira DC, de Lencastre H. Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51:3374–3377. doi: 10.1128/AAC.00275-07. PubMed DOI PMC

Pantůček R, et al. Identification of bacteriophage types and their carriage in Staphylococcus aureus. Arch Virol. 2004;149:1689–1703. doi: 10.1007/s00705-004-0335-6. PubMed DOI

Štveráková D, et al. Rapid identification of intact staphylococcal bacteriophages using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Viruses. 2018;10:176. doi: 10.3390/v10040176. PubMed DOI PMC

Moša, M., Boštík, J., Pantůček, R. & Doškař, J. Medicament in the form of anti-Staphylococcus phage lysate, process of its preparation and use. CZ201200668-A3. Patent Application (2012).

Rosypal S, Rosypalová A. A spontaneus mutant of polyvalent phage 812 capable of growth in Staphylococcus aureus NCTC 8511 carrying prophage 53. Folia Fac Sci Nat Univ Purk Brun. 1970;11:37–47.

Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning: a laboratory manual. 2nd ed., (Cold Spring Harbor Laboratory, 1989).

Botka T, et al. Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus. Virus Genes. 2015;51:122–131. doi: 10.1007/s11262-015-1223-8. PubMed DOI

Botka T, et al. Two highly divergent lineages of exfoliative toxin B-encoding plasmids revealed in impetigo strains of Staphylococcus aureus. Int J Med Microbiol. 2017;307:291–296. doi: 10.1016/j.ijmm.2017.05.005. PubMed DOI

Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2015;31:587–589. doi: 10.1093/bioinformatics/btu661. PubMed DOI

Brettin T, et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365. doi: 10.1038/srep08365. PubMed DOI PMC

Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–W57. doi: 10.1093/nar/gkw413. PubMed DOI PMC

Frith MC, Saunders NFW, Kobe B, Bailey TL. Discovering Sequence Motifs with Arbitrary Insertions and Deletions. PLoS Computational Biology. 2008;4:e1000071. doi: 10.1371/journal.pcbi.1000071. PubMed DOI PMC

Solovyev, V. & Salamov, A. Automatic annotation of microbial genomes and metagenomic sequences in Metagenomics and its applications in agriculture, biomedicine and environmental studies (ed. Li, R. W.) 61–78 (Nova Science Publishers, 2011).

Lesnik EA, et al. Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res. 2001;29:3583–3594. doi: 10.1093/nar/29.17.3583. PubMed DOI PMC

Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36:W181–W184. doi: 10.1093/nar/gkn179. PubMed DOI PMC

Liu B, Pop M. ARDB-Antibiotic Resistance Genes Database. Nucleic Acids Res. 2009;37:D443–D447. doi: 10.1093/nar/gkn656. PubMed DOI PMC

Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on. Nucleic Acids Res. 2016;44:D694–D697. doi: 10.1093/nar/gkv1239. PubMed DOI PMC

Dereeper A, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:W465–W469. doi: 10.1093/nar/gkn180. PubMed DOI PMC

Gu J, et al. Complete genome sequence of Staphylococcus aureus bacteriophage GH15. J Virol. 2012;86:8914–8915. doi: 10.1128/JVI.01313-12. PubMed DOI PMC

Ajuebor J, et al. Comparison of Staphylococcus phage K with close phage relatives commonly employed in phage therapeutics. Antibiotics (Basel). 2018;7:37. doi: 10.3390/antibiotics7020037. PubMed DOI PMC

Gutiérrez D, et al. Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms. Appl Environ Microbiol. 2015;81:3336–3348. doi: 10.1128/AEM.03560-14. PubMed DOI PMC

Takemura-Uchiyama I, et al. Genomic and phylogenetic traits of Staphylococcus phages S25-3 and S25-4 (family Myoviridae, genus Twort-like viruses) Ann Microbiol. 2014;64:1453–1456. doi: 10.1007/s13213-013-0762-2. DOI

Kim SG, et al. Complete genome sequence of Staphylococcus aureus bacteriophage pSa-3. Genome Announc. 2017;5:e00182–17. doi: 10.1128/genomeA.00182-17. PubMed DOI PMC

Kirby AE. Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One. 2012;7:e51017. doi: 10.1371/journal.pone.0051017. PubMed DOI PMC

El Haddad L, et al. Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain. PLoS One. 2014;9:e102600. doi: 10.1371/journal.pone.0102600. PubMed DOI PMC

Varga M, et al. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiol Lett. 2012;332:146–152. doi: 10.1111/j.1574-6968.2012.02589.x. PubMed DOI

Mašlaňová I, et al. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ Microbiol Rep. 2013;5:66–73. doi: 10.1111/j.1758-2229.2012.00378.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...