Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus

. 2015 Aug ; 51 (1) : 122-31. [epub] 20150702

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26135320

Exfoliative toxin A (ETA)-coding temperate bacteriophages are leading contributors to the toxic phenotype of impetigo strains of Staphylococcus aureus. Two distinct eta gene-positive bacteriophages isolated from S. aureus strains which recently caused massive outbreaks of pemphigus neonatorum in Czech maternity hospitals were characterized. The phages, designated ϕB166 and ϕB236, were able to transfer the eta gene into a prophageless S. aureus strain which afterwards converted into an ETA producer. Complete phage genome sequences were determined, and a comparative analysis of five designed genomic regions revealed major variances between them. They differed in the genome size, number of open reading frames, genome architecture, and virion protein patterns. Their high mutual sequence similarity was detected only in the terminal regions of the genome. When compared with the so far described eta phage genomes, noticeable differences were found. Thus, both phages represent two new lineages of as yet not characterized bacteriophages of the Siphoviridae family having impact on pathogenicity of impetigo strains of S. aureus.

Zobrazit více v PubMed

Folia Microbiol (Praha). 2005;50(6):499-502 PubMed

Int J Syst Bacteriol. 1996 Jan;46(1):216-22 PubMed

J Bacteriol. 2009 Jun;191(11):3462-8 PubMed

Mol Microbiol. 2006 Nov;62(4):1035-47 PubMed

Infect Genet Evol. 2013 Aug;18:299-308 PubMed

Arch Virol. 2014 Feb;159(2):389-98 PubMed

Infect Immun. 2001 Dec;69(12):7760-71 PubMed

Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W686-91 PubMed

Int J Med Microbiol. 2003 Feb;292(7-8):541-5 PubMed

Nat Rev Microbiol. 2010 Aug;8(8):541-51 PubMed

Arch Virol. 2004 Sep;149(9):1689-703 PubMed

Int J Med Microbiol. 2012 Nov;302(6):237-41 PubMed

Res Microbiol. 2010 May;161(4):260-7 PubMed

Infect Immun. 2002 Oct;70(10):5835-45 PubMed

Gene. 2002 May 1;289(1-2):109-18 PubMed

Microbiol Immunol. 2000;44(3):189-91 PubMed

Nat Med. 2000 Nov;6(11):1275-7 PubMed

Vet Microbiol. 2003 Oct 8;96(1):81-90 PubMed

Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5174-9 PubMed

Nucleic Acids Res. 2001 Sep 1;29(17):3583-94 PubMed

Int J Med Microbiol. 2006 Feb;296(1):49-54 PubMed

Can J Microbiol. 2000 Nov;46(11):1066-76 PubMed

FEMS Microbiol Lett. 2012 Jul;332(2):146-52 PubMed

Mol Microbiol. 2000 Nov;38(4):694-705 PubMed

Front Cell Infect Microbiol. 2012 Feb 08;2:6 PubMed

Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2192-7 PubMed

Bacteriophage. 2012 Apr 1;2(2):70-78 PubMed

Environ Microbiol. 2010 Sep;12(9):2527-38 PubMed

Can J Microbiol. 1972 Sep;18(9):1491-7 PubMed

Arch Dis Child. 1998 Jan;78(1):85-8 PubMed

Proteomics. 2007 Jan;7(1):64-72 PubMed

Diagn Microbiol Infect Dis. 2010 Mar;66(3):248-52 PubMed

Int J Food Microbiol. 2008 Jan 15;121(1):60-5 PubMed

Environ Microbiol Rep. 2013 Feb;5(1):66-73 PubMed

Zobrazit více v PubMed

GENBANK
KP893289, KP893290

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace