Virion content unpacked by long-read sequencing: stress-induced changes in transmitted staphylococcal mobilome due to phage-satellite interactions
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Ministry of Health of the Czech Republic
NU21J-05-00035
Czech Health Research Council
EXCELES
National Institute of Virology and Bacteriology
LX22NPO5103
National Institute of Virology and Bacteriology
European Union-Next Generation EU
PubMed
41206046
PubMed Central
PMC12597102
DOI
10.1093/nar/gkaf1165
PII: 8317317
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriofágy genetika MeSH
- ciprofloxacin farmakologie MeSH
- DNA bakterií genetika MeSH
- genomové ostrovy genetika MeSH
- nanopórové sekvenování MeSH
- plazmidy genetika MeSH
- stafylokokové bakteriofágy * genetika MeSH
- Staphylococcus epidermidis * genetika virologie účinky léků MeSH
- virion * genetika účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- ciprofloxacin MeSH
- DNA bakterií MeSH
The evolution of the virulence and antibiotic resistance of staphylococci, important opportunistic pathogens, is strongly determined by their mobilome, which can spread by phage virions or small-headed particles resulting from the hijacking of helper phage machinery by phage satellites named phage-inducible chromosomal islands (PICIs). Despite known mechanisms of the formation of transducing particles, it has not yet been possible to analyze their DNA content at the single-virion level. Using the Staphylococcus epidermidis model and long-read nanopore sequencing, we determined the sequence structure and ratio of phage and PICI genophores, plasmid, and bacterial DNA packaged in normal and small-headed virions. It was shown that the ratios vary mainly depending on the helper phage and the antimicrobial used for induction. When the effect of a strictly lytic phage and its combination with ciprofloxacin on a packaged mobilome was analyzed, no significant increase in mobilome dissemination was observed compared to antibiotics alone. Here, we demonstrate a novel approach for the analysis of transduced bacterial mobilome and show in vitro that lytic phage-based therapeutic strategies do not increase the risk of mobile genetic element transfer.
Department of Experimental Biology Faculty of Science Masaryk University Brno 625 00 Czech Republic
RECETOX Faculty of Science Masaryk University Brno 625 00 Czech Republic
Zobrazit více v PubMed
Samia NI, Robicsek A, Heesterbeek H et al. Methicillin-resistant PubMed DOI PMC
Schoenfelder SM, Lange C, Eckart M et al. Success through diversity - how PubMed DOI
McCann MT, Gilmore BF, Gorman SP. PubMed DOI
Guo Y, Du X, Krusche J et al. Invasive PubMed DOI PMC
Otto M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: staphylococcal commensal species such as PubMed DOI PMC
Ingmer H, Gerlach D, Wolz C. Temperate phages of PubMed DOI PMC
Botka T, Růžičková V, Konečná H et al. Complete genome analysis of two new bacteriophages isolated from impetigo strains of PubMed DOI
Otter JA, Kearns AM, French GL et al. Panton-Valentine leukocidin-encoding bacteriophage and gene sequence variation in community-associated methicillin-resistant PubMed DOI
van Wamel WJ, Rooijakkers SH, Ruyken M et al. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of PubMed DOI PMC
Holden MT, Lindsay JA, Corton C et al. Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant PubMed DOI PMC
Penadés JR, Chen J, Quiles-Puchalt N et al. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8. 10.1016/j.mib.2014.11.019. PubMed DOI
Fišarová L, Botka T, Du X et al. PubMed DOI PMC
Xia G, Wolz C. Phages of PubMed DOI
Chen J, Quiles-Puchalt N, Chiang YN et al. Genome hypermobility by lateral transduction. Science. 2018;362:207–12. 10.1126/science.aat5867. PubMed DOI
Davidson AR. A common trick for transferring bacterial DNA. Science. 2018;362:152–3. 10.1126/science.aav1723. PubMed DOI
Goerke C, Koller J, Wolz C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in PubMed DOI PMC
Rohde C, Resch G, Pirnay JP et al. Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses. 2018;10:178. 10.3390/v10040178. PubMed DOI PMC
Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602. 10.1128/MMBR.68.3.560-602.2004. PubMed DOI PMC
Haaber J, Leisner JJ, Cohn MT et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun. 2016;7:13333. 10.1038/ncomms13333. PubMed DOI PMC
Hossain M, Aslan B, Hatoum-Aslan A. Tandem mobilization of anti-phage defenses alongside SCC PubMed DOI PMC
Winstel V, Kuhner P, Krismer B et al. Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage. Appl Environ Microbiol. 2015;81:2481–8. 10.1128/AEM.04190-14. PubMed DOI PMC
Scharn CR, Tenover FC, Goering RV. Transduction of staphylococcal cassette chromosome PubMed DOI PMC
Mašlaňová I, Stříbna S, Doškař J et al. Efficient plasmid transduction to PubMed DOI
Madhusoodanan J, Seo KS, Remortel B et al. An enterotoxin-bearing pathogenicity island in PubMed DOI PMC
Chen HJ, Tsai JC, Hung WC et al. Identification of PubMed DOI PMC
Novick RP, Schlievert P, Ruzin A. Pathogenicity and resistance islands of staphylococci. Microbes Infect. 2001;3:585–94. 10.1016/S1286-4579(01)01414-9. PubMed DOI
Fillol-Salom A, Martinez-Rubio R, Abdulrahman RF et al. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME J. 2018;12:2114–28. 10.1038/s41396-018-0156-3. PubMed DOI PMC
Damle PK, Wall EA, Spilman MS et al. The roles of SaPI1 proteins gp7 (CpmA) and gp6 (CpmB) in capsid size determination and helper phage interference. Virology. 2012;432:277–82. 10.1016/j.virol.2012.05.026. PubMed DOI PMC
Hawkins NC, Kizziah JL, Penadés JR et al. Shape shifter: redirection of prolate phage capsid assembly by staphylococcal pathogenicity islands. Nat Commun. 2021;12:6408. 10.1038/s41467-021-26759-x. PubMed DOI PMC
Ram G, Chen J, Kumar K et al. Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proc Natl Acad Sci USA. 2012;109:16300–5. 10.1073/pnas.1204615109. PubMed DOI PMC
Ubeda C, Olivarez NP, Barry P et al. Specificity of staphylococcal phage and SaPI DNA packaging as revealed by integrase and terminase mutations. Mol Microbiol. 2009;72:98–108. 10.1111/j.1365-2958.2009.06634.x. PubMed DOI PMC
Chen J, Ram G, Penadés JR et al. Pathogenicity island-directed transfer of unlinked chromosomal virulence genes. Molecular Cell. 2015;57:138–49. 10.1016/j.molcel.2014.11.011. PubMed DOI PMC
Chee MSJ, Serrano E, Chiang YN et al. Dual pathogenicity island transfer by piggybacking lateral transduction. Cell. 2023;186:3414–26. 10.1016/j.cell.2023.07.001. PubMed DOI
Bowring JZ, Su Y, Alsaadi A et al. Screening for highly transduced genes in PubMed DOI PMC
Kogay Wolf R, YI and Koonin EV. Defence systems and horizontal gene transfer in bacteria. Environ Microbiol. 2024;26:e16630. 10.1111/1462-2920.16630. PubMed DOI PMC
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev. 2013;77:53–72. 10.1128/MMBR.00044-12. PubMed DOI PMC
Watson BNJ, Staals RHJ, Fineran PC. CRISPR-Cas-mediated phage resistance enhances horizontal gene transfer by transduction. mBio. 2018;9:e02406–17. 10.1128/mBio.02406-17. PubMed DOI PMC
Dean BA, Williams RE, Hall F et al. Phage typing of coagulase-negative staphylococci and micrococci. J Hyg. 1973;71:261–70. 10.1017/S0022172400022737. PubMed DOI PMC
Galac MR, Stam J, Maybank R et al. Complete genome sequence of PubMed DOI PMC
Botka T, Pantůček R, Mašlaňová I et al. Lytic and genomic properties of spontaneous host-range PubMed DOI PMC
Monk IR, Shah IM, Xu M et al. Transforming the untransformable: application of direct transformation to manipulate genetically PubMed DOI PMC
Charpentier E, Anton AI, Barry P et al. Novel cassette-based shuttle vector system for Gram-positive bacteria. Appl Environ Microbiol. 2004;70:6076–85. 10.1128/AEM.70.10.6076-6085.2004. PubMed DOI PMC
Mašlaňová I, Doškař J, Varga M et al. Bacteriophages of PubMed DOI
EUCAST . The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 14.0. EUCAST Development Laboratory for Antimicrobial Susceptibility Testing of bacteria, Växjö, Sweden, 2024. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.xlsx.
Lammens E, Ceyssens PJ, Voet M et al. Representational difference analysis (RDA) of bacteriophage genomes. J Microbiol Methods. 2009;77:207–13. 10.1016/j.mimet.2009.02.006. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Wick RR, Judd LM, Gorrie CL et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595. 10.1371/journal.pcbi.1005595. PubMed DOI PMC
Lin Y, Yuan J, Kolmogorov M et al. Assembly of long error-prone reads using de Bruijn graphs. Proc Natl Acad Sci USA. 2016;113:E8396–405. 10.1073/pnas.1604560113. PubMed DOI PMC
Bouras G, Nepal R, Houtak G et al. Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics. 2023;39:btac776. 10.1093/bioinformatics/btac776. PubMed DOI PMC
Li W, O’Neill KR, Haft DH et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 2021;49:D1020–8. 10.1093/nar/gkaa1105. PubMed DOI PMC
Olshen AB, Venkatraman ES, Lucito R et al. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5:557–72. 10.1093/biostatistics/kxh008. PubMed DOI
Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007;23:657–63. 10.1093/bioinformatics/btl646. PubMed DOI
Meissel K, Yao ES. Using Cliff’s Delta as a Non-Parametric Effect Size Measure: an Accessible Web App and R Tutorial. Pract Assess Res Eval. 2024;29:2. 10.7275/pare.1977. DOI
Lee S, Lee DK. What is the proper way to apply the multiple comparison test?. Korean J Anesthesiol. 2018;71:353–60. 10.4097/kja.d.18.00242. PubMed DOI PMC
Antweiler RC. Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets. II. Group comparisons. Environ Sci Technol. 2015;49:13439–46. 10.1021/acs.est.5b02385. PubMed DOI
R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023. https://cran.r-project.org/.
Wickham H. ggplot2, Elegant Graphics for Data Analysis. Springer-Verlag, New York, NY, 2009. 10.1007/978-0-387-98141-3. DOI
Kassambara A. rstatix: pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.2, 2023. https://rpkgs.datanovia.com/rstatix/.
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022;50:W739–43. 10.1093/nar/gkac382. PubMed DOI PMC
Zheng S, Wang W, Aldahdooh J et al. SynergyFinder Plus: toward better interpretation and annotation of drug combination screening datasets. Genomics Proteomics Bioinformatics. 2022;20:587–96. 10.1016/j.gpb.2022.01.004. PubMed DOI PMC
Kleiner M, Bushnell B, Sanderson KE et al. Transductomics: sequencing-based detection and analysis of transduced DNA in pure cultures and microbial communities. Microbiome. 2020;8:158. 10.1186/s40168-020-00935-5. PubMed DOI PMC
Wolput S, Lood C, Fillol-Salom A et al. Phage-host co-evolution has led to distinct generalized transduction strategies. Nucleic Acids Res. 2024;52:7780–91. 10.1093/nar/gkae489. PubMed DOI PMC
Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol. 2009;502:91–111. 10.1007/978-1-60327-565-1_7. PubMed DOI PMC
Ubeda C, Maiques E, Tormo MA et al. SaPI operon I is required for SaPI packaging and is controlled by LexA. Mol Microbiol. 2007;65:41–50. 10.1111/j.1365-2958.2007.05758.x. PubMed DOI
Jackson EN, Jackson DA, Deans RJ. PubMed DOI
Adams MB, Hayden M, Casjens S. On the sequential packaging of bacteriophage P22 DNA. J Virol. 1983;46:673–7. 10.1128/jvi.46.2.673-677.1983. PubMed DOI PMC
Casjens S, Weigele P. DNA Packaging by Bacteriophage P22. Viral Genome Packaging Machines: Genetics, Structure, and Mechanism. Springer, Boston, MA, 2005; pp.80–8. 10.1007/0-387-28521-0. DOI
Chiang YN, Penadés JR, Chen J. Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLoS Pathog. 2019;15:e1007878. 10.1371/journal.ppat.1007878. PubMed DOI PMC
Quiles-Puchalt N, Carpena N, Alonso JC et al. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc Natl Acad Sci USA. 2014;111:6016–21. 10.1073/pnas.1320538111. PubMed DOI PMC
Alqurainy N, Miguel-Romero L, Sousa Md et al. A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature. Cell Host & Microbe. 2023;31:69–82. 10.1016/j.chom.2022.12.001. PubMed DOI
Zhang Z, Kottadiel VI, Vafabakhsh R et al. A promiscuous DNA packaging machine from bacteriophage T4. PLoS Biol. 2011;9:e1000592. 10.1371/journal.pbio.1000592. PubMed DOI PMC
Vafabakhsh R, Kondabagil K, Earnest T et al. Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage T4. Proc Natl Acad Sci USA. 2014;111:15096–101. 10.1073/pnas.1407235111. PubMed DOI PMC
Coren JS, Pierce JC, Sternberg N. Headful packaging revisited: the packaging of more than one DNA molecule into a bacteriophage P1 head. J Mol Biol. 1995;249:176–84. 10.1006/jmbi.1995.0287. PubMed DOI
Leffers G, Rao VB. A discontinuous headful packaging model for packaging less than headful length DNA molecules by bacteriophage T4. J Mol Biol. 1996;258:839–50. 10.1006/jmbi.1996.0291. PubMed DOI
Ferrer MD, Quiles-Puchalt N, Harwich MD et al. RinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria. Nucleic Acids Res. 2011;39:5866–78. 10.1093/nar/gkr158. PubMed DOI PMC
Kwan BW, Chowdhury N, Wood TK. Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol. 2015;17:4406–14. 10.1111/1462-2920.12873. PubMed DOI
Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in PubMed DOI
Anderson DG, Kowalczykowski SC. Reconstitution of an SOS response pathway: derepression of transcription in response to DNA breaks. Cell. 1998;95:975–9. 10.1016/S0092-8674(00)81721-3. PubMed DOI
Ubeda C, Maiques E, Knecht E et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol. 2005;56:836–44. 10.1111/j.1365-2958.2005.04584.x. PubMed DOI
Finstrlová A, Mašlaňová I, Blasdel Reuter BG et al. Global transcriptomic analysis of bacteriophage-host interactions between a PubMed DOI PMC
Roszak M, Dolegowska B, Cecerska-Heryc E et al. Bacteriophage-ciprofloxacin combination effectiveness depends on PubMed DOI