Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kongresy, práce podpořená grantem
PubMed
29621199
PubMed Central
PMC5923472
DOI
10.3390/v10040178
PII: v10040178
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteriophage, adaptation, phage therapy, production, prophage, regulation, resistance,
- MeSH
- Bacteria genetika virologie MeSH
- bakteriální infekce mikrobiologie terapie MeSH
- bakteriofágy fyziologie MeSH
- fágová terapie * metody MeSH
- lidé MeSH
- mikrobiologie životního prostředí MeSH
- potravinářská mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- kongresy MeSH
- práce podpořená grantem MeSH
Phage therapy is increasingly put forward as a "new" potential tool in the fight against antibiotic resistant infections. During the "Centennial Celebration of Bacteriophage Research" conference in Tbilisi, Georgia on 26-29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.
Chemical Engineering Department Loughborough University Leicestershire LE11 3TU UK
Department of Experimental Biology Faculty of Science Masaryk University 60000 Brno Czech Republic
Department of Fundamental Microbiology University of Lausanne 1015 Lausanne Switzerland
Department of Microbiology Institut Pasteur 75015 Paris France
Department of Pharmaceutical and Pharmacological Sciences KU Leuven 3000 Leuven Belgium
Eliava Institute of Bacteriophage Microbiology and Virology Gotua Street 3 0160 Tbilisi Georgia
Faculty of Dental Medicine The Hebrew University of Jerusalem Jerusalem 9112001 Israel
Institute of Biochemistry and Biophysics Polish Academy of Sciences 00 901 Warsaw Poland
Laboratory of Gene Technology Department of Biosystems 3000 Leuven Belgium
Zobrazit více v PubMed
Koskella B., Brockhurst M.A. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 2014;38:916–931. doi: 10.1111/1574-6976.12072. PubMed DOI PMC
Labrie S.J., Samson J.E., Moineau S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010;8:317–327. doi: 10.1038/nrmicro2315. PubMed DOI
Maxwell K.L. Phages fight back: Inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins. PLoS Pathog. 2016;12:e1005282. doi: 10.1371/journal.ppat.1005282. PubMed DOI PMC
Goldfarb T., Sberro H., Weinstock E., Cohen O., Doron S., Yoav Charpak-Amikam Y., Afik S., Ofir G., Sorek R. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 2015;34:169–183. doi: 10.15252/embj.201489455. PubMed DOI PMC
Ofir G., Melamed S., Sberro H., Mukamel Z., Silverman S., Yaakov G., Doron S., Sorek R. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 2018;3:90–98. doi: 10.1038/s41564-017-0051-0. PubMed DOI PMC
Hall A.R., de Vos D., Friman V.P., Pirnay J.P., Buckling A. Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl. Environ. Microb. 2012;78:5646–5652. doi: 10.1128/AEM.00757-12. PubMed DOI PMC
Friman V.P., Soanes-Brown D., Sierocinski P., Molin S., Johansen H.K., Merabishvili M., Pirnay J.P., de Vos D., Buckling A. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J. Evolut. Biol. 2016;29:188–198. doi: 10.1111/jeb.12774. PubMed DOI
Oechslin F., Piccardi P., Mancini S., Gabard J., Moreillon P., Entenza J.M., Resch G., Que Y.-A. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and Reduces Virulence. J. Infect. Dis. 2017;215:703–712. doi: 10.1093/infdis/jiw632. PubMed DOI PMC
Laanto E., Hoikkala V., Ravantti J., Sundberg L.R. Long-term genomic coevolution of host-parasite interaction in the natural environment. Nat. Commun. 2017;8 doi: 10.1038/s41467-017-00158-7. PubMed DOI PMC
Międzybrodzki R., Borysowski J., Weber-Dąbrowska B., Fortuna W., Letkiewicz S., Szufnarowski K., Pawełczyk Z., Rogóż P., Kłak M., Wojtasik E., et al. Clinical aspects of phage therapy. Adv. Virus Res. 2012;83:73–121. PubMed
Appelmans R. Le dosage du bactériophage. C. R. Soc. Biol. Fil. 1921;89:1098.
Roach D.R., Leung C.Y., Henry M., Morello E., Singh D., Di Santo J.P., Weitz J.S., Debarbieux L. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe. 2017;22:38–47. doi: 10.1016/j.chom.2017.06.018. PubMed DOI
Malik D.J., Sokolov I.J., Vinner G.K., Mancuso F., Cinquerrui S., Vladisavljevic G.T., Clokie M.R.J., Stapley A.G.F., Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017;249:100–133. doi: 10.1016/j.cis.2017.05.014. PubMed DOI
Chan B.K., Sistrom M., Wertz J.E., Kortright K.E., Narayan D., Turner P.E. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 2016;6:26717. doi: 10.1038/srep26717. PubMed DOI PMC
Cooper I.R. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. J. Microbiol. Meth. 2016;130:38–47. doi: 10.1016/j.mimet.2016.07.027. PubMed DOI
Ormala A.M., Jalasvuori M. Phage therapy: Should bacterial resistance to phages be a concern, even in the long run? Bacteriophage. 2013;3:e24219. doi: 10.4161/bact.24219. PubMed DOI PMC
Davis K.M., Isberg R.R. Defining heterogeneity within bacterial populations via single cell approaches. BioEssays. 2016;38:782–790. doi: 10.1002/bies.201500121. PubMed DOI
Magdanova L.A., Goliasnaia N.V. Heterogeneity as an adaptive trait of the bacterial community. Mikrobiologiia. 2013;82:3–13. PubMed
Veening J.W., Smits W.K., Kuipers O.P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 2008;62:193–210. doi: 10.1146/annurev.micro.62.081307.163002. PubMed DOI
Woodford N., Ellington M.J. The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 2007;13:5–18. doi: 10.1111/j.1469-0691.2006.01492.x. PubMed DOI
Babouee Flury B., Ellington M.J., Hopkins K.L., Turton J.F., Doumith M., Loy R., Staves P., Hinic V., Frei R., Woodford N. Association of novel nonsynonymous single nucleotide polymorphisms in ampD with cephalosporin resistance and phylogenetic variations in ampC, ampR, ompF, and ompC in Enterobacter cloacae isolates that are highly resistant to carbapenems. Antimicrob. Agents Chempother. 2016;60:2383–2390. doi: 10.1128/AAC.02835-15. PubMed DOI PMC
Proctor R.A., Kahl B., von Eiff C., Vaudaux P.E., Lew D.P., Peters G. Staphylococcal small colony variants have novel mechanisms for antibiotic resistance. Clin. Infect. Dis. 1998;27(Suppl. 1):S68–S74. doi: 10.1086/514906. PubMed DOI
Beaumont H.J., Gallie J., Kost C., Ferguson G.C., Rainey P.B. Experimental evolution of bet hedging. Nature. 2009;462:90–93. doi: 10.1038/nature08504. PubMed DOI
Schooley R.T., Biswas B., Gill J.J., Hernandez-Morales A., Lancaster J., Lessor L., Barr J.J., Reed S.L., Rohwer F., Benler S., et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2017;61 doi: 10.1128/AAC.00954-17. PubMed DOI PMC
Stern A., Sorek R. The phage-host arms race: Shaping the evolution of microbes. BioEssays. 2011;33:43–51. doi: 10.1002/bies.201000071. PubMed DOI PMC
Betts A., Kaltz O., Hochberg M.E. Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. Proc. Natl. Acad. Sci. USA. 2014;111:11109–11114. doi: 10.1073/pnas.1406763111. PubMed DOI PMC
De Sordi L., Khanna V., Debarbieux L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe. 2017;22:801–808. doi: 10.1016/j.chom.2017.10.010. PubMed DOI
D’Herelle F. On an invisible microbe antagonistic toward dysenteric bacilli: Brief note by Mr. F. D’Herelle, presented by Mr. Roux. 1917. Res. Microbiol. 2007;158:553–554. PubMed
Merabishvili M., Pirnay J.P., de Vos D. Guidelines to compose an ideal bacteriophage cocktail. Methods Mol. Biol. 2018;1693:99–110. doi: 10.1007/978-1-4939-7395-8_9. PubMed DOI
Betts A., Vasse M., Kaltz O., Hochberg M.E. Back to the future: Evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evolut. Appl. 2013;6:1054–1063. doi: 10.1111/eva.12085. PubMed DOI PMC
Merabishvili M., Pirnay J.P., de Vos D. Guidelines to compose an ideal bacteriophage cocktail. In: Azaredo J., Sillankorva S., editors. Bacteriophage Therapy: From Lab to Clinical Practice. 1st ed. Volume 1. Humana Press; New York, NY, USA: 2017. pp. 107–108.
Samson J.E., Magadan A.H., Sabri M., Moineau S. Revenge of the phages: Defeating bacterial defences. Nat. Rev. Microbiol. 2013;11:675–687. doi: 10.1038/nrmicro3096. PubMed DOI
Morello E., Saussereau E., Maura D., Huerre M., Touqui L., Debarbieux L. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: First steps towards treatment and prevention. PLoS ONE. 2011;6:e16963. doi: 10.1371/journal.pone.0016963. PubMed DOI PMC
Clark S.T., Diaz Caballero J., Cheang M., Coburn B., Wang P.W., Donaldson S.L., Zhang Y., Liu M., Keshavjee S., Yau Y.C., et al. Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis. Sci. Rep. 2015;5:10932. doi: 10.1038/srep10932. PubMed DOI PMC
Pirnay J.P., Blasdel B.G., Bretaudeau L., Buckling A., Chanishvili N., Clark J.R., Corte-Real S., Debarbieux L., Dublanchet A., de Vos D., et al. Quality and safety requirements for sustainable phage therapy products. Pharm. Res. 2015;32:2173–2179. doi: 10.1007/s11095-014-1617-7. PubMed DOI PMC
Expert Round Table on Acceptance and Re-implementation of Bacteriophage Therapy Silk route to the acceptance and re-implementation of bacteriophage therapy. Biotechnol. J. 2016;11:595–600. doi: 10.1002/biot.201600023. PubMed DOI
Cooper C.J., Khan Mirzaei M., Nilsson A.S. Adapting drug approval pathways for bacteriophage-based therapeutics. Front. Microbiol. 2016;7:1209. doi: 10.3389/fmicb.2016.01209. PubMed DOI PMC
Pirnay J.P., Verbeken G., Ceyssens P.-J., Huys I., de Vos D., Ameloot C., Fauconnier A. The magistral phage. Viruses. 2018;10:64. doi: 10.3390/v10020064. PubMed DOI PMC
Manrique P., Bolduc B., Walk S.T., van der Oost J., de Vos W.M., Young M.J. Healthy human gut phageome. Proc. Natl. Acad. Sci. USA. 2016;113:10400–10405. doi: 10.1073/pnas.1601060113. PubMed DOI PMC
Erez Z., Steinberger-Levy I., Shamir M., Doron S., Stokar-Avihail A., Peleg Y., Melamed S., Leavitt A., Savidor A., Albeck S., et al. Communication between viruses guides lysis-lysogeny decisions. Nature. 2017;541:488–493. doi: 10.1038/nature21049. PubMed DOI PMC
Howard-Varona C., Hargreaves K.R., Abedon S.T., Sullivan M.B. Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–1520. doi: 10.1038/ismej.2017.16. PubMed DOI PMC
Thomas S., Izard J., Walsh E., Batich K., Chongsathidkiet P., Clarke G., Sela D.A., Muller A.J., Mullin J.M., Albert K., et al. The host microbiome regulates and maintains human health: A primer and perspective for non-microbiologists. Cancer Res. 2017;77:1783–1812. doi: 10.1158/0008-5472.CAN-16-2929. PubMed DOI PMC
Blasdel B.G., Ceyssens P.J., Chevallereau A., Debarbieux L., Lavigne R. Comparative transcriptomics reveals a conserved Bacterial Adaptive Phage Response (BAPR) to viral predation. bioRxiv. 2018 doi: 10.1101/248849. DOI
Lwoff A. Lysogeny. Bacteriol. Rev. 1953;17:269–337. PubMed PMC
Nanda A.M., Heyer A., Krämer C., Grünberger A., Kohlheyer D., Frunzke J. Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level. J. Bacteriol. 2014;196:180–188. doi: 10.1128/JB.01018-13. PubMed DOI PMC
Colon M.P., Chakraborty D., Pevzner Y., Koudelka G.B. Mechanisms that determine the differential stability of Stx(+) and Stx(−) lysogens. Toxins. 2016;8:96. doi: 10.3390/toxins8040096. PubMed DOI PMC
Łobocka M., Hejnowicz M.S., Dąbrowski K., Izak D., Gozdek A., Głowacka A., Gawor J., Kosakowski J., Gromadka R., Weber-Dąbrowska B., et al. Staphylococcus aureus Strains for the Production of Monoclonal Bacteriophage Preparations Deprived of Contamination with Plasmid DNA. WO 2016/030871 A1. U.S. Patent. 2016 Mar 16;
Fortier L.C., Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–365. doi: 10.4161/viru.24498. PubMed DOI PMC
Colavecchio A., Cadieux B., Lo A., Goodridge L.D. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family—A review. Front. Microbiol. 2017;8:1108. doi: 10.3389/fmicb.2017.01108. PubMed DOI PMC
Feiner R., Argov T., Rabinovich L., Sigal N., Borovok L., Herskovits A.A. A new perspective on lysogeny: Prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 2015;13:641–650. doi: 10.1038/nrmicro3527. PubMed DOI
Canchaya C., Desiere F., Mcshan W.M., Ferretti J.J., Parkhill J., Brüssow H. Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. 2002;302:245–258. doi: 10.1006/viro.2002.1570. PubMed DOI
Touchon M., Bernheim A., Rocha E.P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–2754. doi: 10.1038/ismej.2016.47. PubMed DOI PMC
Maslanova I., Stribna S., Doskar J., Pantucek R. Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage. FEMS Microbiol. Lett. 2016;363 doi: 10.1093/femsle/fnw211. PubMed DOI
Haaber J., Leisner J.L., Cohn M.T., Catalan-Moreno A., Nielsen J.B., Westh H., Penadés J.R., Ingmer H. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat. Commun. 2016;7:13333. doi: 10.1038/ncomms13333. PubMed DOI PMC
Akhter S., Aziz R.K., Edwards R.A. PhiSpy: A novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 2012;40:e126. doi: 10.1093/nar/gks406. PubMed DOI PMC
Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC
Ceyssens P.J., Minakhin L., Van den Bossche A., Yakunina M., Klimuk E., Blasdel B.G., de Smet J., Noben J.P., Bläsi U., Severinov K., et al. Development of giant bacteriophage φKZ is independent of the host transcription apparatus. J. Virol. 2018;88:10501–10510. doi: 10.1128/JVI.01347-14. PubMed DOI PMC
Łobocka M., Hejnowicz M.S., Gągała U., Weber-Dąbrowska B., Węgrzyn G., Dadlez M. The first step to bacteriophage therapy—How to choose the correct phage. In: Borysowski J., Międzybrodzki R., Górski A., editors. Phage Therapy: Current Research and Applications. Caister Academic Press; Poole, UK: 2004. pp. 23–69.