Virion Structure of Israeli Acute Bee Paralysis Virus

. 2016 Sep 15 ; 90 (18) : 8150-9. [epub] 20160826

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27384649

UNLABELLED: The pollination services provided by the western honeybee (Apis mellifera) are critical for agricultural production and the diversity of wild flowering plants. However, honeybees suffer from environmental pollution, habitat loss, and pathogens, including viruses that can cause fatal diseases. Israeli acute bee paralysis virus (IAPV), from the family Dicistroviridae, has been shown to cause colony collapse disorder in the United States. Here, we present the IAPV virion structure determined to a resolution of 4.0 Å and the structure of a pentamer of capsid protein protomers at a resolution of 2.7 Å. IAPV has major capsid proteins VP1 and VP3 with noncanonical jellyroll β-barrel folds composed of only seven instead of eight β-strands, as is the rule for proteins of other viruses with the same fold. The maturation of dicistroviruses is connected to the cleavage of precursor capsid protein VP0 into subunits VP3 and VP4. We show that a putative catalytic site formed by the residues Asp-Asp-Phe of VP1 is optimally positioned to perform the cleavage. Furthermore, unlike many picornaviruses, IAPV does not contain a hydrophobic pocket in capsid protein VP1 that could be targeted by capsid-binding antiviral compounds. IMPORTANCE: Honeybee pollination is required for agricultural production and to sustain the biodiversity of wild flora. However, honeybee populations in Europe and North America are under pressure from pathogens, including viruses that cause colony losses. Viruses from the family Dicistroviridae can cause honeybee infections that are lethal, not only to individual honeybees, but to whole colonies. Here, we present the virion structure of an Aparavirus, Israeli acute bee paralysis virus (IAPV), a member of a complex of closely related viruses that are distributed worldwide. IAPV exhibits unique structural features not observed in other picorna-like viruses. Capsid protein VP1 of IAPV does not contain a hydrophobic pocket, implying that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.

Zobrazit více v PubMed

Allsopp MH, de Lange WJ, Veldtman R. 2008. Valuing insect pollination services with cost of replacement. PLoS One 3:e3128. doi:10.1371/journal.pone.0003128. PubMed DOI PMC

Biesmeijer JC, Roberts SP, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. doi:10.1126/science.1127863. PubMed DOI

van Engelsdorp D, Hayes J Jr, Underwood RM, Pettis J. 2008. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS One 3:e4071. doi:10.1371/journal.pone.0004071. PubMed DOI PMC

Dainat B, Vanengelsdorp D, Neumann P. 2012. Colony collapse disorder in Europe. Environ Microbiol Rep 4:123–125. doi:10.1111/j.1758-2229.2011.00312.x. PubMed DOI

Smith KM, Loh EH, Rostal MK, Zambrana-Torrelio CM, Mendiola L, Daszak P. 2013. Pathogens, pests, and economics: drivers of honey bee colony declines and losses. Ecohealth 10:434–445. doi:10.1007/s10393-013-0870-2. PubMed DOI

Vanengelsdorp D, Meixner MD. 2010. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103(Suppl 1):S80–S95. doi:10.1016/j.jip.2009.06.011. PubMed DOI

Chen YP, Siede R. 2007. Honey bee viruses. Adv Virus Res 70:33–80. doi:10.1016/S0065-3527(07)70002-7. PubMed DOI

de Miranda JR, Cordoni G, Budge G. 2010. The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol 103(Suppl 1):S30–S47. doi:10.1016/j.jip.2009.06.014. PubMed DOI

Li Z, Chen Y, Zhang S, Chen S, Li W, Yan L, Shi L, Wu L, Sohr A, Su S. 2013. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L. PLoS One 8:e77354. doi:10.1371/journal.pone.0077354. PubMed DOI PMC

de Miranda JR, Genersch E. 2010. Deformed wing virus. J Invertebr Pathol 103(Suppl 1):S48–S61. doi:10.1016/j.jip.2009.06.012. PubMed DOI

Maori E, Paldi N, Shafir S, Kalev H, Tsur E, Glick E, Sela I. 2009. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol Biol 18:55–60. doi:10.1111/j.1365-2583.2009.00847.x. PubMed DOI

Berthound HIA, Haueter M, Radloff S, Neumann P. 2010. Virus infections and winter losses of honey bee colonies (Apis mellifera). J Apicult Res 49:60–65.

Le Gall O, Christian P, Fauquet CM, King AM, Knowles NJ, Nakashima N, Stanway G, Gorbalenya AE. 2008. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T=3 virion architecture. Arch Virol 153:715–727. doi:10.1007/s00705-008-0041-x. PubMed DOI

Tate J, Liljas L, Scotti P, Christian P, Lin T, Johnson JE. 1999. The crystal structure of cricket paralysis virus: the first view of a new virus family. Nat Struct Biol 6:765–774. doi:10.1038/11543. PubMed DOI

Squires G, Pous J, Agirre J, Rozas-Dennis GS, Costabel MD, Marti GA, Navaza J, Bressanelli S, Guerin DM, Rey FA. 2013. Structure of the Triatoma virus capsid. Acta Crystallogr D Biol Crystallogr 69:1026–1037. doi:10.1107/S0907444913004617. PubMed DOI PMC

Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337:709–716. doi:10.1038/337709a0. PubMed DOI

Agirre J, Aloria K, Arizmendi JM, Iloro I, Elortza F, Sanchez-Eugenia R, Marti GA, Neumann E, Rey FA, Guerin DM. 2011. Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology 409:91–101. doi:10.1016/j.virol.2010.09.034. PubMed DOI

Rombaut B, Foriers A, Boeye A. 1991. In vitro assembly of poliovirus 14 S subunits: identification of the assembly promoting activity of infected cell extracts. Virology 180:781–787. doi:10.1016/0042-6822(91)90091-O. PubMed DOI

Rombaut B, Vrijsen R, Boeye A. 1984. In vitro assembly of poliovirus empty capsids: antigenic consequences and immunological assay of the morphopoietic factor. Virology 135:546–550. doi:10.1016/0042-6822(84)90209-5. PubMed DOI

Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ. 2010. Picornaviruses. Curr Top Microbiol Immunol 343:43–89. doi:10.1007/82_2010_37. PubMed DOI PMC

Levy HC, Bostina M, Filman DJ, Hogle JM. 2010. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J Virol 84:4426–4441. doi:10.1128/JVI.02393-09. PubMed DOI PMC

Lyu K, Ding J, Han JF, Zhang Y, Wu XY, He YL, Qin CF, Chen R. 2014. Human enterovirus 71 uncoating captured at atomic resolution. J Virol 88:3114–3126. doi:10.1128/JVI.03029-13. PubMed DOI PMC

Wang X, Peng W, Ren J, Hu Z, Xu J, Lou Z, Li X, Yin W, Shen X, Porta C, Walter TS, Evans G, Axford D, Owen R, Rowlands DJ, Wang J, Stuart DI, Fry EE, Rao Z. 2012. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol 19:424–429. doi:10.1038/nsmb.2255. PubMed DOI PMC

Shingler KL, Yoder JL, Carnegie MS, Ashley RE, Makhov AM, Conway JF, Hafenstein S. 2013. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog 9:e1003240. doi:10.1371/journal.ppat.1003240. PubMed DOI PMC

Bostina M, Levy H, Filman DJ, Hogle JM. 2011. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol 85:776–783. doi:10.1128/JVI.00531-10. PubMed DOI PMC

Fricks CE, Hogle JM. 1990. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol 64:1934–1945. PubMed PMC

Greve JM, Forte CP, Marlor CW, Meyer AM, Hoover-Litty H, Wunderlich D, McClelland A. 1991. Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J Virol 65:6015–6023. PubMed PMC

Prchla E, Kuechler E, Blaas D, Fuchs R. 1994. Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol 68:3713–3723. PubMed PMC

Ren J, Wang X, Hu Z, Gao Q, Sun Y, Li X, Porta C, Walter TS, Gilbert RJ, Zhao Y, Axford D, Williams M, McAuley K, Rowlands DJ, Yin W, Wang J, Stuart DI, Rao Z, Fry EE. 2013. Picornavirus uncoating intermediate captured in atomic detail. Nat Commun 4:1929. doi:10.1038/ncomms2889. PubMed DOI PMC

Seitsonen JJ, Shakeel S, Susi P, Pandurangan AP, Sinkovits RS, Hyvonen H, Laurinmaki P, Yla-Pelto J, Topf M, Hyypia T, Butcher SJ. 2012. Structural analysis of coxsackievirus A7 reveals conformational changes associated with uncoating. J Virol 86:7207–7215. doi:10.1128/JVI.06425-11. PubMed DOI PMC

Garriga D, Pickl-Herk A, Luque D, Wruss J, Caston JR, Blaas D, Verdaguer N. 2012. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog 8:e1002473. doi:10.1371/journal.ppat.1002473. PubMed DOI PMC

Chow M, Newman JF, Filman D, Hogle JM, Rowlands DJ, Brown F. 1987. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486. doi:10.1038/327482a0. PubMed DOI

Lin J, Cheng N, Chow M, Filman DJ, Steven AC, Hogle JM, Belnap DM. 2011. An externalized polypeptide partitions between two distinct sites on genome-released poliovirus particles. J Virol 85:9974–9983. doi:10.1128/JVI.05013-11. PubMed DOI PMC

de Miranda JR, Bailey L, Ball BV, Blanchard P, Budge G, Chejanovsky N, Chen Y-P, Gauthier L, Genersch E, De Graaf D, Ribière M, Ryabov E, De Smet L, van der Steen JJM. 2013. Standard methods for Apis mellifera pest and pathogen research, p 1–55. In Dietemann V, Ellis JD, Neumann P. (ed), The COLOSS beebook, vol II IBRA, Treforest, United Kingdom.

Boncristiani HF, Evans JD, Chen Y, Pettis J, Murphy C, Lopez DL, Simone-Finstrom M, Strand M, Tarpy DR, Rueppell O. 2013. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS One 8:e73429. doi:10.1371/journal.pone.0073429. PubMed DOI PMC

Tong L, Rossmann MG. 1997. Rotation function calculations with GLRF program. Methods Enzymol 276:594–611. doi:10.1016/S0076-6879(97)76080-4. PubMed DOI

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J Appl Crystallogr 40:658–674. doi:10.1107/S0021889807021206. PubMed DOI PMC

Rossmann MG, Blow DM. 1962. The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallogr 15:24–31. doi:10.1107/S0365110X62000067. DOI

Brunger AT. 2007. Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733. doi:10.1038/nprot.2007.406. PubMed DOI

Kleywegt GJ, Read RJ. 1997. Not your average density. Structure 5:1557–1569. doi:10.1016/S0969-2126(97)00305-5. PubMed DOI

Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. doi:10.1107/S0907444904019158. PubMed DOI

Jones TA, Zou JY, Cowan SW, Kjeldgaard M. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119. doi:10.1107/S0108767390010224. PubMed DOI

Kleywegt GJ, Brunger AT. 1996. Checking your imagination: applications of the free R value. Structure 4:897–904. doi:10.1016/S0969-2126(96)00097-4. PubMed DOI

Blumenthal R, Seth P, Willingham MC, Pastan I. 1986. pH-dependent lysis of liposomes by adenovirus. Biochemistry 25:2231–2237. doi:10.1021/bi00356a057. PubMed DOI

Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, Rueckert RR, Sherry B, Vriend G. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153. doi:10.1038/317145a0. PubMed DOI

Olson AJ, Bricogne G, Harrison SC. 1983. Structure of tomato busy stunt virus IV. The virus particle at 2.9 A resolution. J Mol Biol 171:61–93. PubMed

Hogle JM, Chow M, Filman DJ. 1985. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365. doi:10.1126/science.2994218. PubMed DOI

Rotbart HA. 2002. Treatment of picornavirus infections. Antiviral Res 53:83–98. doi:10.1016/S0166-3542(01)00206-6. PubMed DOI

Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ. 1986. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233:1286–1293. doi:10.1126/science.3018924. PubMed DOI

Hadfield AT, Diana GD, Rossmann MG. 1999. Analysis of three structurally related antiviral compounds in complex with human rhinovirus 16. Proc Natl Acad Sci U S A 96:14730–14735. doi:10.1073/pnas.96.26.14730. PubMed DOI PMC

Grant RA, Hiremath CN, Filman DJ, Syed R, Andries K, Hogle JM. 1994. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr Biol 4:784–797. PubMed

Hiremath CN, Grant RA, Filman DJ, Hogle JM. 1995. Binding of the antiviral drug WIN51711 to the Sabin strain of type 3 poliovirus: structural comparison with drug binding in rhinovirus 14. Acta Crystallogr D Biol Crystallogr 51:473–489. PubMed

Zlotnick A, Reddy VS, Dasgupta R, Schneemann A, Ray WJ Jr, Rueckert RR, Johnson JE. 1994. Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue. J Biol Chem 269:13680–13684. PubMed

Hogle JM. 2002. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol 56:677–702. doi:10.1146/annurev.micro.56.012302.160757. PubMed DOI PMC

Boege U, Ko DS, Scraba DG. 1986. Toward an in vitro system for picornavirus assembly: purification of mengovirus 14S capsid precursor particles. J Virol 57:275–284. PubMed PMC

Agirre J, Goret G, LeGoff M, Sanchez-Eugenia R, Marti GA, Navaza J, Guerin DM, Neumann E. 2013. Cryo-electron microscopy reconstructions of triatoma virus particles: a clue to unravel genome delivery and capsid disassembly. J Gen Virol 94:1058–1068. doi:10.1099/vir.0.048553-0. PubMed DOI

Snijder J, Uetrecht C, Rose RJ, Sanchez-Eugenia R, Marti GA, Agirre J, Guerin DM, Wuite GJ, Heck AJ, Roos WH. 2013. Probing the biophysical interplay between a viral genome and its capsid. Nat Chem 5:502–509. doi:10.1038/nchem.1627. PubMed DOI

Li C, Wang JC, Taylor MW, Zlotnick A. 2012. In vitro assembly of an empty picornavirus capsid follows a dodecahedral path. J Virol 86:13062–13069. doi:10.1128/JVI.01033-12. PubMed DOI PMC

Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21. doi:10.1107/S0907444909042073. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...