Structure of deformed wing virus, a major honey bee pathogen

. 2017 Mar 21 ; 114 (12) : 3210-3215. [epub] 20170307

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28270616

The worldwide population of western honey bees (Apis mellifera) is under pressure from habitat loss, environmental stress, and pathogens, particularly viruses that cause lethal epidemics. Deformed wing virus (DWV) from the family Iflaviridae, together with its vector, the mite Varroa destructor, is likely the major threat to the world's honey bees. However, lack of knowledge of the atomic structures of iflaviruses has hindered the development of effective treatments against them. Here, we present the virion structures of DWV determined to a resolution of 3.1 Å using cryo-electron microscopy and 3.8 Å by X-ray crystallography. The C-terminal extension of capsid protein VP3 folds into a globular protruding (P) domain, exposed on the virion surface. The P domain contains an Asp-His-Ser catalytic triad that is, together with five residues that are spatially close, conserved among iflaviruses. These residues may participate in receptor binding or provide the protease, lipase, or esterase activity required for entry of the virus into a host cell. Furthermore, nucleotides of the DWV RNA genome interact with VP3 subunits. The capsid protein residues involved in the RNA binding are conserved among honey bee iflaviruses, suggesting a putative role of the genome in stabilizing the virion or facilitating capsid assembly. Identifying the RNA-binding and putative catalytic sites within the DWV virion structure enables future analyses of how DWV and other iflaviruses infect insect cells and also opens up possibilities for the development of antiviral treatments.

Zobrazit více v PubMed

Smith KM, et al. Pathogens, pests, and economics: Drivers of honey bee colony declines and losses. EcoHealth. 2013;10(4):434–445. PubMed

Allsopp MH, de Lange WJ, Veldtman R. Valuing insect pollination services with cost of replacement. PLoS One. 2008;3(9):e3128. PubMed PMC

Biesmeijer JC, et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science. 2006;313(5785):351–354. PubMed

Dainat B, Vanengelsdorp D, Neumann P. Colony collapse disorder in Europe. Environ Microbiol Rep. 2012;4(1):123–125. PubMed

van Engelsdorp D, Hayes J, Jr, Underwood RM, Pettis J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS One. 2008;3(12):e4071. PubMed PMC

Bowen-Walker PL, Martin SJ, Gunn A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite varroa jacobsoni Oud. J Invertebr Pathol. 1999;73(1):101–106. PubMed

Shen M, Yang X, Cox-Foster D, Cui L. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology. 2005;342(1):141–149. PubMed

Highfield AC, et al. Deformed wing virus implicated in overwintering honeybee colony losses. Appl Environ Microbiol. 2009;75(22):7212–7220. PubMed PMC

de Miranda JR, Gauthier L, Ribiere M, Chen YP. Honey bee viruses and their effect on bee and colony health. In: Sammataro DYJ, editor. Honey Bee Colony Health: Challenges and Sustainable Solutions. CRC Press; Boca Raton, FL: 2012. pp. 71–102.

Le Gall O, et al. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol. 2008;153(4):715–727. PubMed

Lanzi G, et al. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.) J Virol. 2006;80(10):4998–5009. PubMed PMC

Zhang J, et al. Three-dimensional structure of the Chinese Sacbrood bee virus. Sci China C Life Sci. 2001;44(4):443–448. PubMed

Kalynych S, et al. Virion structure of iflavirus slow bee paralysis virus at 2.6-angstrom resolution. J Virol. 2016;90(16):7444–7455. PubMed PMC

de Miranda JR, et al. Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.) J Gen Virol. 2010;91(Pt 10):2524–2530. PubMed

Rossmann MG, et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317(6033):145–153. PubMed

Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G. Tomato bushy stunt virus at 2.9 A resolution. Nature. 1978;276(5686):368–373. PubMed

Bergelson JM, Coyne CB. Picornavirus entry. Adv Exp Med Biol. 2013;790:24–41. PubMed

Fuchs R, Blaas D. Productive entry pathways of human rhinoviruses. Adv Virol. 2012;2012:826301. PubMed PMC

Jackson T, Mould AP, Sheppard D, King AM. Integrin alphavbeta1 is a receptor for foot-and-mouth disease virus. J Virol. 2002;76(3):935–941. PubMed PMC

Boonyakiat Y, Hughes PJ, Ghazi F, Stanway G. Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry. J Virol. 2001;75(20):10000–10004. PubMed PMC

Kalynych S, Pálková L, Plevka P. The structure of human parechovirus 1 reveals an association of the RNA genome with the capsid. J Virol. 2015;90(3):1377–1386. PubMed PMC

Holm L, Rosenstrom P. Dali server: Conservation mapping in 3D. Nucleic Acids Res. 2010;38(Web Server issue):W545–W549. PubMed PMC

York RL, et al. Structural, mechanistic, and antigenic characterization of the human astrovirus capsid. J Virol. 2015;90(5):2254–2263. PubMed PMC

Dodson G, Wlodawer A. Catalytic triads and their relatives. Trends Biochem Sci. 1998;23(9):347–352. PubMed

Canaan S, Roussel A, Verger R, Cambillau C. Gastric lipase: Crystal structure and activity. Biochim Biophys Acta. 1999;1441(2-3):197–204. PubMed

Vaquero ME, Barriuso J, Martínez MJ, Prieto A. Properties, structure, and applications of microbial sterol esterases. Appl Microbiol Biotechnol. 2016;100(5):2047–2061. PubMed

Ongus JR, et al. Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J Gen Virol. 2004;85(Pt 12):3747–3755. PubMed

Fujiyuki T, et al. Novel insect picorna-like virus identified in the brains of aggressive worker honeybees. J Virol. 2004;78(3):1093–1100. PubMed PMC

Bailey L, Woods RD. Three previously undescribed viruses from the honey bee. J Gen Virol. 1974;25(2):175–186. PubMed

Cao S, et al. Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol. 2007;81(11):5949–5957. PubMed PMC

Hansman GS, et al. Structural basis for norovirus inhibition and fucose mimicry by citrate. J Virol. 2012;86(1):284–292. PubMed PMC

Farr GA, Zhang LG, Tattersall P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc Natl Acad Sci USA. 2005;102(47):17148–17153. PubMed PMC

Mullapudi E, Přidal A, Pálková L, de Miranda JR, Plevka P. Virion structure of Israeli acute bee paralysis virus. J Virol. 2016;90(18):8150–8159. PubMed PMC

Tate J, et al. The crystal structure of cricket paralysis virus: The first view of a new virus family. Nat Struct Biol. 1999;6(8):765–774. PubMed

Squires G, et al. Structure of the triatoma virus capsid. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 6):1026–1037. PubMed PMC

Wang X, et al. Hepatitis A virus and the origins of picornaviruses. Nature. 2015;517(7532):85–88. PubMed PMC

Smith TJ, et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science. 1986;233(4770):1286–1293. PubMed

Hadfield AT, Diana GD, Rossmann MG. Analysis of three structurally related antiviral compounds in complex with human rhinovirus 16. Proc Natl Acad Sci USA. 1999;96(26):14730–14735. PubMed PMC

Grant RA, et al. Structures of poliovirus complexes with anti-viral drugs: Implications for viral stability and drug design. Curr Biol. 1994;4(9):784–797. PubMed

Morgunova EYu, et al. The atomic structure of carnation mottle virus capsid protein. FEBS Lett. 1994;338(3):267–271. PubMed

Zhu L, et al. Structure of Ljungan virus provides insight into genome packaging of this picornavirus. Nat Commun. 2015;6:8316. PubMed PMC

Shakeel S, et al. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis. Nat Commun. 2016;7:11387. PubMed PMC

Nugent CI, Kirkegaard K. RNA binding properties of poliovirus subviral particles. J Virol. 1995;69(1):13–22. PubMed PMC

de Miranda JR, et al. Standard methods for Apis mellifera pest and pathogen research. In: Dietemann V, Ellis JD, Neumann P, editors. The COLOSS BEEBOOK. Vol II IBRA; Treforest, UK: 2013.

Scheres SH. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180(3):519–530. PubMed PMC

Davis IW, et al. MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35(Web Server issue):W375–W383. PubMed PMC

Shaikh TR, et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc. 2008;3(12):1941–1974. PubMed PMC

Tang G, et al. EMAN2: An extensible image processing suite for electron microscopy. J Struct Biol. 2007;157(1):38–46. PubMed

Mindell JA, Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol. 2003;142(3):334–347. PubMed

Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods. 2012;9(9):853–854. PubMed PMC

Chen S, et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy. 2013;135:24–35. PubMed PMC

Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–2132. PubMed

Afonine PV, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 4):352–367. PubMed PMC

Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):133–144. PubMed PMC

Tong L, Rossmann MG. Rotation function calculations with GLRF program. Methods Enzymol. 1997;276:594–611. PubMed

McCoy AJ, et al. Phaser crystallographic software. J Appl Cryst. 2007;40(Pt 4):658–674. PubMed PMC

Kleywegt GJ, Read RJ. Not your average density. Structure. 1997;5(12):1557–1569. PubMed

Winn MD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):235–242. PubMed PMC

Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005;41(1):207–234. PubMed

Vagin AA, et al. REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2184–2195. PubMed

Langer G, Cohen SX, Lamzin VS, Perrakis A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc. 2008;3(7):1171–1179. PubMed PMC

Chenna R, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003;31(13):3497–3500. PubMed PMC

Pettersen EF, et al. UCSF Chimera: A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. PubMed

Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14(1):33–38. PubMed

Huson DH. SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics. 1998;14(1):68–73. PubMed

Zobrazit více v PubMed

PDB
5L8Q, 5MV5, 5MUP, 5MV6, 5G52, 5G51

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...