Effect of Selected Music Soundtracks on Cardiac Vagal Control and Complexity Assessed by Heart Rate Variability

. 2023 Nov 28 ; 72 (5) : 587-596.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38015758

UNLABELLED: Listening to music is experimentally associated with positive stress reduction effect on human organisms. However, the opinions of therapists about this complementary non-invasive therapy are still different. PURPOSE: The aim of our study was to investigate the effect of selected passive music therapy frequencies without vocals on selected cardio-vagal and complexity indices of short-term heart rate variability (HRV) in healthy youth, in terms of calming the human. MAIN METHODS: 30 probands (15 male, averaged age: 19.7+/-1.4 years, BMI: 23.3+/-3.8 kg/m2) were examined during protocol (Silence baseline, Music 1 (20-1000 Hz), Silence 1, Music 2 (250-2000 Hz), Silence 2, Music 3 (1000-16000 Hz), and Silence 3). Evaluated HRV parameters in time, spectral, and geometrical domains represent indices of cardio-vagal and emotional regulation. Additionally, HRV complexity was calculated by approximate entropy and sample entropy (SampEn) and subjective characteristics of each phase by Likert scale. RESULTS: the distance between subsequent R-waves in the electrocardiogram (RR intervals [ms]) and SampEn were significantly higher during Music 3 compared to Silence 3 (p=0.015, p=0.021, respectively). Geometrical cardio-vagal index was significantly higher during Music 2 than during Silence 2 (p=0.006). In the subjective perception of the healthy youths evaluated statistically through a Likert scale, the phases of music were perceived significantly more pleasant than the silent phases (p<0.001, p=0.008, p=0.003, respectively). CONCLUSIONS: Our findings revealed a rise of cardio-vagal modulation and higher complexity assessed by short-term HRV indices suggesting positive relaxing effect music especially of higher frequency on human organism.

Zobrazit více v PubMed

Horden P. Music as Medicine. 1st Edition. Routledge; London: 2000. p. 416.

Stegemann T, Geretsegger M, Phan Quoc E, Riedl H, Smetana M. Music therapy and other music-based interventions in pediatric health care: an overview. Medicines (Basel) 2019;6:25. doi: 10.3390/medicines6010025. PubMed DOI PMC

Veternik M, Tonhajzerova I, Misek J, Jakusova V, Hudeckova H, Jakus J. The impact of sound exposure on heart rate variability in adolescent students. Physiol Res. 2018;67:695–702. doi: 10.33549/physiolres.933882. PubMed DOI

Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF. Neural correlates of heart rate variability during emotion. Neuroimage. 2009;44:213–222. doi: 10.1016/j.neuroimage.2008.07.056. PubMed DOI

Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly. 2004;134:514–522. doi: 10.4414/smw.2004.10321. PubMed DOI

Holzman JB, Bridgett DJ. Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neurosci Biobehav Rev. 2017;74:233–255. doi: 10.1016/j.neubiorev.2016.12.032. PubMed DOI

Laborde S, Mosley E, Mertgen A. Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning - Resting, Reactivity, and Recovery. Front Neurosci. 2018;12:458. doi: 10.3389/fnins.2018.00458. PubMed DOI PMC

Rahman S, Habel M, Contrada RJ. Poincaré plot indices as measures of sympathetic cardiac regulation: Responses to psychological stress and associations with pre-ejection period. Int J Psychophysiol. 2018;133:79–90. doi: 10.1016/j.ijpsycho.2018.08.005. PubMed DOI

Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213. doi: 10.3389/fpsyg.2017.00213. PubMed DOI PMC

Parizek D, Sladicekova K, Tonhajzerova I, Veterník M, Jakus J. The effect of music on heart rate variability (review) Acta Medica Martiniana. 2021;21:1–8. doi: 10.2478/acm-2021-0001. DOI

Santana MDR, Martiniano EC, Monteiro LRL, Valenti VE, Garner DM, Sorpreso ICE, de Abre LC. Musical Auditory Stimulation Influences Heart Rate Autonomic Responses to Endodontic Treatment. Evid Based Complement Alternat Med. 2017;2017:4847869. doi: 10.1155/2017/4847869. PubMed DOI PMC

Richman JS, Moorman JR. Physiological time-series analysis using approximate and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI

Deschodt-Arsac V, Blons E, Gilfriche P, Spiluttini B, Arsac LM. Entropy in heart rate dynamics reflects how HRV-biofeedback training improves neurovisceral complexity during stress-cognition interactions. Entropy. 2020;22:317. doi: 10.3390/e22030317. PubMed DOI PMC

Vanderlei FM, de Abreu LC, Garner DM, Valenti VE. Symbolic Analysis of Heart Rate Variability During Exposure to Musical Auditory Stimulation. Altern Ther Health Med. 2016;22:24–31. PubMed

Tonhajzerova I, Ondrejka I, Adamik P, Hruby R, Javorka M, Trunkvalterova Z, Mokra D, Javorka K. Changes in the cardiac autonomic regulation in children with attention deficit hyperactivity disorder (ADHD) Indian J Med Res. 2009;130:44–50. PubMed

Finn S, Fancourt D. The biological impact of listening to music in clinical and nonclinical settings: A systematic review. Prog Brain Res. 2018;237:173–200. doi: 10.1016/bs.pbr.2018.03.007. PubMed DOI

Chuang C-Y, Han W-R, Li P-C, Young S-T. Effects of music therapy on subjective sensations and heart rate variability in treated cancer survivors: a pilot study. Complement Ther Med. 2010;18:224–226. doi: 10.1016/j.ctim.2010.08.003. PubMed DOI

Kamioka H, Tsutani K, Yamada M, Park H, Okuizumi H, Tsuruoka K, Honda T, et al. Effectiveness of music therapy: a summary of systematic reviews based on randomized controlled trials of music interventions. Patient Prefer Adherence. 2014;8:727–754. doi: 10.2147/PPA.S61340. PubMed DOI PMC

Koelsch S, Jäncke L. Music and the heart. Eur Heart J. 2015;36:3043–3049. doi: 10.1093/eurheartj/ehv430. PubMed DOI

Hirshoren N, Tzoran I, Makrienko I, Edoute Y, Plawner MM, Itskovitz-Eldor J, Jacob G. Menstrual cycle effects on the neurohumoral and autonomic nervous systems regulating the cardiovascular system. J Clin Endocrinol Metab. 2002;87:1569–1575. doi: 10.1210/jcem.87.4.8406. PubMed DOI

Misek J, Belyaev I, Jakusova V, Tonhajzerova I, Barabas J, Jakus J. Heart rate variability affected by radiofrequency electromagnetic field in adolescent students. Bioelectromagnetics. 2018;39:277–288. doi: 10.1002/bem.22115. PubMed DOI

Visnovcova Z, Mestanik M, Javorka M, Mokra D, Gala M, Jurko A, Calkovska A, Tonhajzerova I. Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol Meas. 2014;35:1319–1334. doi: 10.1088/0967-3334/35/7/1319. PubMed DOI

Ziaran S. Protection of Human Beings Against Vibration and Noise. (In Slovak) Slovak University of Technology; Bratislava: 2008.

Milo A, Reiss JD. Designing spaces and soundscapes. Integrating sonic previews in architectural modelling applications. Proc Int Congr Acoust; 2019; pp. 4138–4145.

Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–1065. PubMed

Tarvainen MP, Niskanen J-P, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV--heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113:210–220. doi: 10.1016/j.cmpb.2013.07.024. PubMed DOI

Shaffer F, Meehan ZM, Zerr CL. A Critical Review of Ultra-Short-Term Heart Rate Variability Norms Research. Front Neurosci. 2020;14:594880. doi: 10.3389/fnins.2020.594880. PubMed DOI PMC

Piskorski J, Guzik P. Filtering Poincaré plots. Comput Methods Sci Technol. 2005;11:39–48. doi: 10.12921/cmst.2005.11.01.39-48. DOI

Kamen PW, Krum H, Tonkin AM. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond) 1996;91:201–208. doi: 10.1042/cs0910201. PubMed DOI

Delgado-Bonal A, Marshak A. Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. Entropy (Basel) 2019;21:541. doi: 10.3390/e21060541. PubMed DOI PMC

González C, Jensen E, Gambús P, Vallverdú M. Entropy Measures as Descriptors to Identify Apneas in Rheoencephalographic Signals. Entropy (Basel) 2019;21:605. doi: 10.3390/e21060605. PubMed DOI PMC

Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng. 2013;41:349–365. doi: 10.1007/s10439-012-0668-3. PubMed DOI PMC

Miot HA. Correlation analysis in clinical and experimental studies. J Vasc Bras. 2018;17:275–279. doi: 10.1590/1677-5449.174118. PubMed DOI PMC

Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav Neurosci. 2018;12:127. doi: 10.3389/fnbeh.2018.00127. PubMed DOI PMC

Roy B, Choudhuri R, Pandey A, Bandopadhyay S, Sarangi S, Kumar Ghatak S. Effect of rotating acoustic stimulus on heart rate variability in healthy adults. Open Neurol J. 2012;6:71–77. doi: 10.2174/1874205X01206010071. PubMed DOI PMC

Roque AL, Valenti VE, Guida HL, Campos MF, Knap A, Vanderlei LCM, Ferreir LL, et al. The effects of auditory stimulation with music on heart rate variability in healthy women. Clinics (Sao Paulo) 2013;68:960–967. doi: 10.6061/clinics/2013(07)12. PubMed DOI PMC

Mojtabavi H, Saghazadeh A, Valenti VE, Rezaei N. Can music influence cardiac autonomic system? A systematic review and narrative synthesis to evaluate its impact on heart rate variability. Complement Ther Clin Pract. 2020;39:101162. doi: 10.1016/j.ctcp.2020.101162. PubMed DOI

Nakajima Y, Tanaka N, Mima T, Izumi S-I. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability. Behav Neurol. 2016;2016:5965894. doi: 10.1155/2016/5965894. PubMed DOI PMC

Solís-Montufar EE, Gálvez-Coyt G, Muñoz-Diosdado A. Entropy Analysis of RR-Time Series From Stress Tests. Front Physiol. 2020;11:981. doi: 10.3389/fphys.2020.00981. PubMed DOI PMC

Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68:988–1001. doi: 10.1016/S0025-6196(12)62272-1. PubMed DOI

Porges SW. The polyvagal perspective. Biol Psychol. 2007;74:116–143. doi: 10.1016/j.biopsycho.2006.06.009. PubMed DOI PMC

Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol. 2021;599:2527–2557. doi: 10.1113/JP279189. PubMed DOI PMC

Riganello F, Cortese MD, Arcuri F, Quintieri M, Dolce G. How Can Music Influence the Autonomic Nervous System Response in Patients with Severe Disorder of Consciousness? Front Neurosci. 2015;9:461. doi: 10.3389/fnins.2015.00461. PubMed DOI PMC

Wong C. The benefits of music therapy. Verywell mind 2018. https://www.verywell-mind.com/benefits-of-music-therapy-89829?print .

Tan YZ, Ozdemir S, Temiz A, Celik F. The effect of relaxing music on heart rate and heart rate variability during ECG GATED-myocardial perfusion scintigraphy. Complement Ther Clin Pract. 2015;21:137–140. doi: 10.1016/j.ctcp.2014.12.003. PubMed DOI

Tonhajzerova I, Ondrejka I, Ferencova N, Bujnakova I, Grendar M, Olexova LB, Hrtanek I, Visnovcova Z. Alternations in the Cardiovascular Autonomic Regulation and Growth Factors in Autism. Physiol Res. 2021;70:551–561. doi: 10.33549/physiolres.934662. PubMed DOI PMC

Orri JC, Hughes EM, Mistry DG, Scala A. Assessment of HRV after maximal exercise in trained postmenopausal women. Physiol Res. 2018;67:703–709. doi: 10.33549/physiolres.933850. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...