Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39870739
PubMed Central
PMC11772602
DOI
10.1038/s41598-024-85064-x
PII: 10.1038/s41598-024-85064-x
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus aureus, Antimicrobial treatment, Multidrug-resistant bacteria, Phage therapy, Phage-antibiotic synergy, Piezoelectric biosensor,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriofágy MeSH
- biosenzitivní techniky * metody MeSH
- lysostafin farmakologie MeSH
- mikrorovnovážné techniky křemenného krystalu * MeSH
- Staphylococcus aureus * účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- lysostafin MeSH
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 ΔtarM, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.
Zobrazit více v PubMed
Kouijzer, I. J. E., Fowler, V. G. & Ten Oever, J. Redefining Staphylococcus aureus bacteremia: A structured approach guiding diagnostic and therapeutic management. J Infect86, 9–13. 10.1016/j.jinf.2022.10.042 (2023). PubMed PMC
Hatfull, G. F., Dedrick, R. M. & Schooley, R. T. Phage therapy for antibiotic-resistant bacterial infections. Annu. Rev. Med.73, 197–211. 10.1146/annurev-med-080219-122208 (2022). PubMed
Uyttebroek, S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: A systematic review. Lancet Infect. Dis.22, e208–e220. 10.1016/S1473-3099(21)00612-5 (2022). PubMed
Akturk, E. et al. Synergistic action of phage and antibiotics: Parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics8, 103. 10.3390/antibiotics8030103 (2019). PubMed PMC
Dickey, J. & Perrot, V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS ONE14, e0209390. 10.1371/journal.pone.0209390 (2019). PubMed PMC
Li, X. et al. Characterization of a novel bacteriophage Henu2 and evaluation of the synergistic antibacterial activity of phage-antibiotics. Antibiotics10, 174. 10.3390/antibiotics10020174 (2021). PubMed PMC
Nazarov, P. A. MDR pumps as crossroads of resistance: Antibiotics and bacteriophages. Antibiotics11, 734. 10.3390/antibiotics11060734 (2022). PubMed PMC
Leclerc, Q. J., Lindsay, J. A. & Knight, G. M. Modelling the synergistic effect of bacteriophage and antibiotics on bacteria: Killers and drivers of resistance evolution. PLoS Comput. Biol.18, e1010746. 10.1371/journal.pcbi.1010746 (2022). PubMed PMC
Jędrusiak, A., Fortuna, W., Majewska, J., Górski, A. & Jończyk-Matysiak, E. Phage interactions with the nervous system in health and disease. Cells12, 1720. 10.3390/cells12131720 (2023). PubMed PMC
Botka, T. et al. Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci. Sci. Rep.9, 5475. 10.1038/s41598-019-41868-w (2019). PubMed PMC
Fišarová, L. et al. Staphylococcus epidermidis phages transduce antimicrobial resistance plasmids and mobilize chromosomal islands. mSphere6, e00223-e321. 10.1128/mSphere.00223-21 (2021). PubMed PMC
Botka, T. et al. Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus. Virus Genes51, 122–131. 10.1007/s11262-015-1223-8 (2015). PubMed
Naureen, Z. et al. Comparison between American and European legislation in the therapeutical and alimentary bacteriophage usage. Acta Biomed. Ateneo Parm91, e2020023. 10.23750/abm.v91i13-S.10815 (2020). PubMed PMC
Liu, D. et al. The safety and toxicity of phage therapy: A review of animal and clinical studies. Viruses13, 1268. 10.3390/v13071268 (2021). PubMed PMC
Podlacha, M. et al. Interactions of bacteriophages with animal and human organisms safety issues in the light of phage therapy. Int. J. Mol. Sci.22, 8937. 10.3390/ijms22168937 (2021). PubMed PMC
Melo, L. D. R., Monteiro, R., Pires, D. P. & Azeredo, J. Phage-host interaction analysis by flow cytometry allows for rapid and efficient screening of phages. Antibiotics11, 164. 10.3390/antibiotics11020164 (2022). PubMed PMC
Gan, B.-H., Cai, X., Javor, S., Köhler, T. & Reymond, J.-L. Synergistic effect of propidium iodide and small molecule antibiotics with the antimicrobial peptide dendrimer G3KL against gram-negative bacteria. Molecules25, 5643. 10.3390/molecules25235643 (2020). PubMed PMC
Zheng, Y., He, L., Asiamah, T. K. & Otto, M. Colonization of medical devices by staphylococci. Environ. Microbiol.20, 3141–3153. 10.1111/1462-2920.14129 (2018). PubMed PMC
Foulston, L., Elsholz, A. K. W., DeFrancesco, A. S. & Losick, R. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. mBio5, e01667-e1714. 10.1128/mBio.01667-14 (2014). PubMed PMC
Schilcher, K. & Horswill, A. R. Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev.84, e00026-e119. 10.1128/MMBR.00026-19 (2020). PubMed PMC
Moormeier, D. E. & Bayles, K. W. Staphylococcus aureus biofilm: A complex developmental organism. Mol. Microbiol.104, 365–376. 10.1111/mmi.13634 (2017). PubMed PMC
Shrestha, L., Bhattarai, N. R. & Khanal, B. Comparative evaluation of methods for the detection of biofilm formation in coagulase-negative staphylococci and correlation with antibiogram. Infect. Drug Resist.11, 607–613. 10.2147/IDR.S159764 (2018). PubMed PMC
Obořilová, R. et al. Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria. Nanoscale13, 13538–13549. 10.1039/d1nr02921e (2021). PubMed
Forinová, M. et al. A comparative assessment of a piezoelectric biosensor based on a new antifouling nanolayer and cultivation methods: Enhancing S. aureus detection in fresh dairy products. Curr. Res. Biotechnol.6, 100166. 10.1016/j.crbiot.2023.100166 (2023).
Lim, H. J., Saha, T., Tey, B. T., Tan, W. S. & Ooi, C. W. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens. Bioelectron.168, 112513. 10.1016/j.bios.2020.112513 (2020). PubMed PMC
Park, J.-H., Cho, Y.-W. & Kim, T.-H. Recent advances in surface Plasmon resonance sensors for sensitive optical detection of pathogens. Biosensors12, 180. 10.3390/bios12030180 (2022). PubMed PMC
Shrivastav, A. M. et al. Engineering the penetration depth of nearly guided wave surface plasmon resonance towards application in bacterial cells monitoring. Sens. Actuators B Chem.345, 130338. 10.1016/j.snb.2021.130338 (2021).
Latag, G. V., Nakamura, T., Palai, D., Mondarte, E. A. Q. & Hayashi, T. Investigation of three-dimensional bacterial adhesion manner on model organic surfaces using quartz crystal microbalance with energy dissipation monitoring. ACS Appl. Bio Mater.6, 1185–1194. 10.1021/acsabm.2c01012 (2023). PubMed PMC
Salazar, J. et al. Real-time detection of the bacterial biofilm formation stages using QCM-based sensors. Chemosensors11, 68. 10.3390/chemosensors11010068 (2023).
Amer, M.-A. et al. Multichannel QCM-based system for continuous monitoring of bacterial biofilm growth. IEEE Trans. Instrum. Meas.69, 2982–2995. 10.1109/TIM.2019.2929280 (2020).
Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Physik155, 206–222. 10.1007/BF01337937 (1959).
Skládal, P. Piezoelectric biosensors: Shedding light on principles and applications. Microchim. Acta191, 184. 10.1007/s00604-024-06257-9 (2024). PubMed PMC
Alexander, T. E., Lozeau, L. D. & Camesano, T. A. QCM-D characterization of time-dependence of bacterial adhesion. Cell Surf.5, 100024. 10.1016/j.tcsw.2019.100024 (2019). PubMed PMC
Olsson, A. L. J. QCM-D for non-destructive real-time assessment of Pseudomonas aeruginosa biofilm attachment to the substratum during biofilm growth. Colloids Surf. B Biointerfaces136, 928–934. 10.1016/j.colsurfb.2015.10.032 (2015). PubMed
Ripa, R., Shen, A. Q. & Funari, R. Detecting Escherichia coli biofilm development stages on gold and titanium by quartz crystal microbalance. ACS Omega5, 2295–2302. 10.1021/acsomega.9b03540 (2020). PubMed PMC
Swana, K. W., Camesano, T. A. & Nagarajan, R. Formation of a fully anionic supported lipid bilayer to model bacterial inner membrane for QCM-D studies. Membranes12, 558. 10.3390/membranes12060558 (2022). PubMed PMC
Vybiral, D. et al. Complete nucleotide sequence and molecular characterization of two lytic Staphylococcus aureus phages: 44AHJD and P68. FEMS Microbiol. Lett.219, 275–283. 10.1016/S0378-1097(03)00028-4 (2003). PubMed
Jayakumar, J., Kumar, V. A., Biswas, L. & Biswas, R. Therapeutic applications of lysostaphin against Staphylococcus aureus. J. Appl. Microbiol.131, 1072–1082. 10.1111/jam.14985 (2021). PubMed
Bastos, M. D. C. D. F., Coutinho, B. G. & Coelho, M. L. V. Lysostaphin: A staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals3, 1139–1161. 10.3390/ph3041139 (2010). PubMed PMC
Schindler, C. A. & Schuhardt, V. T. Lysostaphin: A new bacteriolytic agent for the Staphylococcus. Proc. Natl. Acad. Sci. U.S.A.51, 414–421. 10.1073/pnas.51.3.414 (1964). PubMed PMC
Gonzalez-Delgado, L. S. et al. Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b. Nat. Chem. Biol.16, 24–30. 10.1038/s41589-019-0393-4 (2020). PubMed PMC
Wu, J. A., Kusuma, C., Mond, J. J. & Kokai-Kun, J. F. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob. Agents Chemother.47, 3407–3414. 10.1128/AAC.47.11.3407-3414.2003 (2003). PubMed PMC
Hrebík, D. et al. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Sci Adv5, eaaw7414. 10.1126/sciadv.aaw7414 (2019). PubMed PMC
Aleshkin, A. V. et al. Phagebiotics in treatment and prophylaxis of healthcare-associated infections. Bacteriophage6, e1251379. 10.1080/21597081.2016.1251379 (2016). PubMed PMC
Kreiswirth, B. N. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature305, 709–712. 10.1038/305709a0 (1983). PubMed
Brown, S. et al. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl. Acad. Sci. U.S.A.109, 18909–18914. 10.1073/pnas.1209126109 (2012). PubMed PMC
Li, X. An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci. Rep.5, 17219. 10.1038/srep17219 (2015). PubMed PMC
Botka, T. et al. Two highly divergent lineages of exfoliative toxin B-encoding plasmids revealed in impetigo strains of Staphylococcus aureus. Int. J. Med. Microbiol.307, 291–296. 10.1016/j.ijmm.2017.05.005 (2017). PubMed
Růžičková, V. et al. Major clonal lineages in impetigo Staphylococcus aureus strains isolated in Czech and Slovak maternity hospitals. Int. J. Med. Microbiol.302, 237–241. 10.1016/j.ijmm.2012.04.001 (2012). PubMed
Tiwari, S., Nizet, O. & Dillon, N. Development of a high-throughput minimum inhibitory concentration (HT-MIC) testing workflow. Front. Microbiol.14, 1079033. 10.3389/fmicb.2023.1079033 (2023). PubMed PMC
Nečas, D. & Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys10, 181–188. 10.2478/s11534-011-0096-2 (2012).
Olsson, A. L. J., Wargenau, A. & Tufenkji, N. Optimizing bacteriophage surface densities for bacterial capture and sensing in quartz crystal microbalance with dissipation monitoring. ACS Appl. Mater. Interfaces8, 13698–13706. 10.1021/acsami.6b02227 (2016). PubMed
Víšová, I., Houska, M. & Vaisocherová-Lísalová, H. Biorecognition antifouling coatings in complex biological fluids: A review of functionalization aspects. Analyst147, 2597–2614. 10.1039/d2an00436d (2022). PubMed
Wang, L., Fan, D., Chen, W. & Terentjev, E. M. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci. Rep.5, 15159. 10.1038/srep15159 (2015). PubMed PMC
Kim, M. et al. Phage-antibiotic synergy via delayed lysis. Appl. Environ. Microbiol.84, e02085-e2118. 10.1128/AEM.02085-18 (2018). PubMed PMC
Chhibber, S., Kaur, T. & Sandeep Kaur. Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS ONE8, e56022. 10.1371/journal.pone.0056022 (2013). PubMed PMC
Bhargava, K., Nath, G., Bhargava, A., Aseri, G. K. & Jain, N. Phage therapeutics: From promises to practices and prospectives. Appl. Microbiol. Biotechnol.105, 9047–9067. 10.1007/s00253-021-11695-z (2021). PubMed PMC
Łusiak-Szelachowska, M., Weber-Dąbrowska, B. & Górski, A. Bacteriophages and lysins in biofilm control. Virol. Sin.35, 125–133. 10.1007/s12250-019-00192-3 (2020). PubMed PMC
Rajaram, K. et al. Real-time analysis of dual-display phage immobilization and autoantibody screening using quartz crystal microbalance with dissipation monitoring. Int. J. Nanomed.10, 5237. 10.2147/IJN.S84800 (2015). PubMed PMC